https://www.selleckchem.com/products/sirtinol.html ry collaboration is a comprehensive method to be used for the reduction of distracted driving. Therapeutic, level IV. Therapeutic, level IV. To achieve maximum visual benefit, wavefront-guided scleral lens corrections (WGCs) are aligned with the underlying wavefront error of each individual eye. This requirement adds complexity to the fitting process. With a view toward simplification in lens fitting, this study quantified the consequences of placing WGCs at two pre-defined locations. This study aimed to quantify performance reduction accompanying the placement of the WGC at two locations (1) the average decentered location (ADL; average decentration observed across individuals wearing scleral lenses) and (2) the geometric center (GC) of the lens. Deidentified residual aberration and lens translation data from 36 conventional scleral lens-wearing eyes with corneal ectasia were used to simulate WGC correction in silico. The WGCs were decentered from the eye-specific pupil position to both the ADL and GC locations. The impact of these misalignments was assessed in terms of change (from the aligned, eye-specific pupil position) in higher-order root mean square (HORMS) wavefront error, change in log of the visual Strehl ratio (logVSX), and predicted change in logMAR visual acuity (VA). As expected, HORMS increased, logVSX decreased, and predicted VA was poorer at both ADL and GC compared with the aligned condition (P < .001). Thirty-four of 36 eyes had greater residual HORMS, and 33 of 36 eyes had worse logVSX values at the GC than at the ADL. In clinical terms, 19 of 36 eyes at the ADL and 35 of 36 eyes at the GC had a predicted loss in VA of three letters or greater. The placement of the WGC at either ADL or GC is predicted to lead to a noticeable reduction in VA for more than half of the eyes studied, suggesting the simplification of the fitting process is not worth the cost in performance. The placement of the WGC a