https://www.selleckchem.com/products/fsen1.html Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis2CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.The composition of dynamic covalent imine libraries (DCL) adapts to the presence of the hexameric resorcinarene capsule. In the presence of the self-assembled capsule, a kinetic and thermodynamic modulation of the imine constituents of the DCLs was observed, which was induced by an unusual predatory action of the capsule on specific imine constituents. More complex 2 × 2 DCLs also adapt to the presence of the hexameric capsule, showing a thermodynamic and kinetic modulation of the constituents induced by the predatory action of the capsule. By cross-referencing experimental data, a good selectivity (up to 66%) for one constituent can be induced in a 2 × 2 DCL.The efficient and catalytic amination of unactivated alkenes with simple secondary alkyl amine