https://www.selleckchem.com/ The method is demonstrated here using a silicon AFM probe with its native oxide and a diamond sample. Assuming the 6-12 Lennard-Jones potential form, best-fit values for the work of adhesion (W adh) and range of adhesion (z 0) parameters were determined to be 80 ± 20 mJ/m2 and 0.6 ± 0.2 nm, respectively. Furthermore, the shape of the experimentally extracted force curves was shown to deviate from that calculated using the 6-12 Lennard-Jones potential, having weaker attraction at larger tip-sample separation distances and weaker repulsion at smaller tip-sample separation distances. This methodology represents the first experimental technique in which material interaction potential parameters were verified over a range of tip-sample separation distances for a tip apex of arbitrary geometry.Plasmonic metal/semiconductor composites have attracted great attention for efficient solar energy harvesting in photovoltaic and photocatalytic applications owing to their extremely high visible-light absorption and tuned effective band gap. In this work, Ag-loaded TiO2 nanocolumn (Ag-TNC) arrays were fabricated based on anodic aluminum oxide (AAO) template by combining atomic layer deposition (ALD) and vacuum evaporation. The effects of the Ag loading position and deposition thickness, and the morphology, structure and composition of Ag-deposited TNC arrays on its optical and photocatalytic properties were studied. The Ag-filled TiO2 (AFT) nanocolumn arrays exhibited higher removal efficiency of methylene blue (MB) compared with Ag-coated TiO2 (ACT) nanocolumn arrays and pure TiO2 nanocolumns arrays. Both experimental and theoretical simulation results demonstrated that the enhanced photocatalytic performance of AFT nanocolumn arrays was attributed to the surface plasmon resonance (SPR) of Ag and the absorption of light by TiO2. These results represent a promising step forward to the development of high-performance photocatalysts for energy conversion