https://www.selleckchem.com/products/5-ethynyl-2--deoxyuridine.html The size, shape and structure of iron particles in iron electrode influence the electrochemical properties of Fe/air cells. In order to improve the electrochemical performance of Fe/air cells, an attempt has been made successfully to synthesize iron oxide particles with different surface morphologies and have been used as negative electrodes. Fe₂O₃ nanoparticles were synthesized by hydrothermal method, in which their different morphologies viz., hollow spheres, tubes and plates have been controlled by the concentration of precursors. All the results showed better cycleability, good discharge capacity of synthesized Fe₂O₃ exhibited improved performance compared to commercial Fe₂O₃. Among the synthesized Fe₂O₃, hollow sphere provided the highest discharge capacity.Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO₂ growth process has been proposed to explain the morphology of SnO₂ nanowires.We have fabricated ZnO nano rods by hydrothermal method and successively doped them with tin (Sn) using different concentrations of 25, 50, 75 and 100 mg of tin chloride. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. The doped materials were th