https://www.selleckchem.com/ALK.html The accumulation of ammonia in poultry houses is of concern to bird and human health. Acidification of the litter by application of acidifying amendments such as sodium bisulfate (SBS) retains ammonia generated by microbial degradation of uric acid as harmless ammonium in the litter. Although some studies on the effects of litter amendments on specific bacteria and groups of bacteria have been carried out previously, wide gaps in knowledge remain. In the present study, 2 types of samples were prepared and either left unamended or amended with 2.5 or 10% SBS. One set of samples consisted of a 11 mixture of built-up litter and fresh poultry manure (L/M); the other of fresh wood shavings and fresh poultry manure (S/M). The samples were kept in the laboratory at room temperature for 35 d. The pH of unamended mixtures increased to 7.3 and 6.9 for L/M and S/M, respectively. A pH of 6.7 and 3.9 on day 35 was observed for L/M and SM with 2.5% SBS, respectively. The corresponding values for LM and SM amended with 10% iforms warrant actions to improve the microbial quality of litter to be reused.The objective of this article was to provide the nonmodeler reader of Poultry Science, an overview of the system dynamics modeling method (SDM) through development of a broiler house disease management simulator (BHDMS). System dynamics modeling uses feedback theory and computer-aided simulation to help elucidate relationships between factors in complex systems, which may be circular or interrupted with long delays. Materials used to build the simulator include data from literature and industry indices. The methods used were the steps in SDM, namely 1) Identify the problem and boundaries; 2) develop a dynamic hypothesis explaining cause of the problem; 3) build the causal loop diagram (CLD); 4) develop the stock and flow model; 5) conduct model simulations; and 6) model validation. Results presented here are the CLD and stock and flow model of the