https://www.selleckchem.com/products/prgl493.html Sensors based on fluorogenic RNA aptamers have emerged in recent years. These sensors have been used for in vitro and intracellular detection of a broad range of biological and medical targets. However, the potential application of fluorogenic RNA-based sensors for point-of-care testing is still little studied. Here, we report a paper substrate-based portable fluorogenic RNA sensor system. Target detection can be simply performed by rehydration of RNA sensor-embedded filter papers. This affordable sensor system can be used for the selective, sensitive, and rapid detection of different target analytes, such as antibiotics and cellular signaling molecules. We believe that these paper-based fluorogenic RNA sensors show great potential for point-of-care testing of a wide range of targets from small molecules, nucleic acids, proteins, to various pathogens.A rapid analytical procedure is proposed for determining two antimicrobial onion organosulfur compounds, propyl disulfide (PDS) and propyl propane thiosulfonate (PTSO), in animal feed. The use of PTSO as a natural ingredient in animal feed is allowed due to its antimicrobial activity against pathogenic organisms. Two analytical methodologies using gas chromatography coupled to mass spectrometry (GC-MS) are compared. After the extraction of the compounds from animal feed with acetonitrile, dispersive solid phase extraction (DSPE) as a cleaning stage with C18, or dispersive liquid-liquid microextraction (DLLME), using 100 μL of CHCl3, was tried. Both the methods were validated using a pig feed sample and the best results were achieved by DLLME. This technique provided cleaner extracts, five-times greater linear ranges and lower detection limits than simple cleaning due to the enrichment factor achieved. The relative standard deviation decreased from 22% with DSPE to 13% with DLLME. The usefulness of the DLLME-GC-MS methodology was tested by analysing 10 different samples o