These effects will be useful in assessing new photon-pair sources for quantum technologies, especially since we require little additional complexity compared to a joint spectral intensity measurement - essentially just the ability to detect at least two photons in each output port.Assembly of plasmonic nanomaterials into a low refractive index medium, such as an aerogel, holds a great promise for optical metamaterials, optical sensors, and photothermal energy converters. However, conventional plasmonic aerogels are opaque and optically isotropic composites, impeding them from being used as low-loss or polarization-dependent optical materials. Here we demonstrate a plasmonic-cellulose nanofiber composite aerogel that comprises of well-dispersed gold nanorods within a cellulose nanofiber network. The cellulose aerogel host is highly transparent owing to the small scattering cross-section of the nanofibers and forms a nematic liquid crystalline medium with strong optical birefringence. We find that the longitudinal surface plasmon resonance peak of gold nanorods shows a dramatic shift when probed for the cellulose aerogel compared with the wet gels. Simulations reveal the shift of surface plasmon resonance peak with gel drying can be attributed to the change of the effective refractive index of the gels. This composite material may provide a platform for three- dimensional plasmonic devices ranging from optical sensors to metamaterials.In this paper, we present a systematic analysis for the design of Si-rich-nitride (SRN) based interposer waveguide layers interfacing InP-based devices and Si3N4 waveguides, towards monolithic co-integration of active and passive elements through a Back-End-Of-Line process. The investigation is performed via extensive 2D-eigenvalue and 3D-FDTD electromagnetic simulations and focuses on three different interposer designs, where performance in terms of coupling loss and back reflections is exchanged for fabrication complexity. In addition, a tolerance analysis is performed for the demonstration of the proposed coupling scheme's resilience to fabrication misalignments. The calculations use for the refractive index of the SRN interposer, real values extracted from ellipsometry measurements of a novel ultra-Si-rich-nitride material developed and engineered for this purpose. This new material provides tunability in the real part of the refractive index with low-stress crack free samples grown up to 500nm thickness. Test structures with cutbacks featuring waveguides of 500 × 500nm2 cross section formed via e-beam lithography reveal 15dB/cm propagation losses in line with similar amorphous silicon-rich nitride (aSiN) materials. The proposed coupling concept although assumes an InP active medium, can be applied also with GaAs based lasers and dual facet devices such as Semiconductor Optical Amplifiers (SOAs) and electroabsorption modulators. In addition, all proposed designs are compatible in terms of critical dimensions with low cost 248nm DUV lithography targeting to maximize the low-cost advantage of the Si3N4 platform with very high coupling performance. Our results are expected to pave the way for the generation of a versatile, low cost, high performance monolithic InP-Quantum-Dot (QD)/Si3N4 platform on a common Si substrate.Metasurfaces optics and structured light represent two emerging paradigms which are revolutionizing optics in a wide range of fields, from imaging to telecommunications, both in the classical and single-photon regimes. In this work, we present and describe a method for the design of high-resolution geometric-phase metasurfaces in the form of continuously variant sub-wavelength gratings, and we demonstrate how this technique is suitable for harmonic phase masks implementing conformal optical transformations. In this framework, we revisit the metasurface design of blazed gratings and spiral phase plates, the so-called q-plates, and we extend the method to the metasurface implementation of two conformal mappings, the log-pol and the circular-sector transformation, which have been exploited successfully to perform the generation, sorting and manipulation of structured light beams carrying orbital angular momentum.Tissue birefringence is an intrinsic marker of potential value for cancer diagnosis. Traditionally, birefringence properties have been studied by using intensity-based formalisms, through the Mueller matrix algebra. On the other hand, the Jones matrix description allows for a direct assessment of the sample's anisotropic response. However, because Jones algebra is based on complex fields, requiring measurements of both phase and amplitude, it is less commonly used. Here we propose a real-time imaging method for measuring Jones matrices by quantitative phase imaging. We combine a broadband phase imaging system with a polarization-sensitive detector to obtain Jones matrices at each point in a megapixel scale image, with near video rate capture speeds. To validate the utility of our approach, we measured standard targets, partially birefringent samples, dynamic specimens, and thinly sliced histopathological tissue.Spatial Light Modulators (SLMs) are widely used in several fields of optics such as adaptive optics. SLMs based on Liquid Crystal (LC) devices allow a dynamic and easy representation of two-dimensional phase maps. A drawback of these devices is their elevated cost, preventing a massive use of the technology. We present a more affordable approach based on the serial arrangement of vertical aligned LC devices, with characteristics of phase modulation similar to a widely used parallel aligned LC device. We discuss the peculiarities of the approach, the performance and some potential areas of applications.Quantum dot light-emitting diodes (QLEDs) possess huge potential in display due to their outstanding optoelectronic performance; however, serve degradation during operation blocks their practical applications. https://www.selleckchem.com/products/vvd-214.html High temperature is regarded as one of major factors causing degradation. Therefore, a systematical study on the working temperature of QLEDs is very essential and urgent for the development of high stable QLEDs. In this work, different influence factors such as the electro-optic conversion efficiency (EOCE), voltage, current density, active area, substrate size, substrate type and sample contact are discussed in detail on the working temperature of QLEDs. The research results show that the working temperature of general QLEDs under normal operation conditions is usually smaller than 75 °C when the ambient temperature is 25 °C. However, temperature of QLEDs working under extreme conditions, such as high power or small substrate size, will exceed 100 °C, resulting in irreversible damage to the devices. Moreover, some effective measures to reduce the working temperature are also proposed.