https://www.selleckchem.com/products/Cyclopamine.html This multifunctional nanocarrier provides a new strategy for the development of combined tumor therapy.Precision loading of nanoclusters in confined spaces, which has been enthusiastically pursued in the scientific realm, is still associated with some mysteries of "how", "when", and "why". Here, we isolated two similar heterometallic cluster-in-cage compounds, [Ag@Cu12S8@Cu4(dpph)6]X (X = OH, SD/AgCu16a and X = PF6, SD/AgCu16b; SD = SunDi), by use of an antigalvanic reaction between organometallic [PhC≡CCu]n and Ph3CSH with elemental silver. Both compounds are formed by fitting an Archimedean Ag@Cu12 cuboctahedral cluster into a Platonic Cu4(dpph)6 tetrahedral cage [dpph = bis(diphenylphosphino)hexane]. The Ag@Cu12 cluster is a hollow cuboctahedral Cu12 cage filled with a central AgI atom, and all eight triangular faces of the Ag@Cu12 cuboctahedron are triply capped by eight S2- ions, four of which in a tetrahedral array further internally pillar four Cu vertices of the outer Cu4(dpph)6 tetrahedron, fixing the cluster in the cage. Both compounds can be deemed as molecular fragments excised from porous nanomaterials filled with discrete nanoclusters, thus providing more details for understanding the confined growth of atomically precise nanoclusters. Electrospray ionization mass spectrometry (ESI-MS) reveals that the AgCu16 cluster is quite stable in CH2Cl2 and can stepwise lose dpph ligand in the gas phase under increased collision energy. This work not only presents a precise aggregation of metal atoms in a confined cavity to form a cluster-in-cage compound but also provides deep insights into the binding and geometry matching between clusters and cages in one entity.Electrocatalysis is indispensable to various emerging energy conversion and storage devices such as fuel cells and water electrolyzers. Owing to their unique physicochemical properties, perovskite oxide materials are one of the most promising water