https://www.selleckchem.com/products/ijmjd6.html The field of life sciences encompasses a myriad of disciplines that collectively provide insight toward the intrinsic framework of life. Developmental physiology is one of these disciplines that can describe the origins of life at the molecular, cellular, tissue, and organismal level. However, organismal development is a continual process that transcends conception and progresses throughout the lifetime of an organism. In this Illumination, we discuss opportunities that secondary-level life science educators have when teaching developmental physiology through an agricultural lens. Specifically, we propose teaching about the origins of meat and milk, as a nontraditional approach for introducing developmental physiology to students. To justify this notion, we explore how novel research in livestock production focuses on meeting food demands imposed by our growing global population. In addition, we link these concepts to commonly employed standards in secondary-level science classrooms across the United States. In conclusion, the science of livestock production provides a window of opportunity for secondary-level physiology instructors to teach developmental physiology in a form that can readily adhere to institutionally employed standards.We have created a conceptual framework for the core concept of "mass balance." Unlike the previous conceptual frameworks that we have created and validated, the framework for "mass balance" is simply a description in words of the fundamental mass balance equation and the implications of the equation. We surveyed physiology faculty and asked them to rate the importance of "mass balance" as defined by the conceptual framework and also to rate the importance for their students of being able to apply the core concept to liquids, gases, solutes, and solids. Respondents indicated that "mass balance" is important and that our conceptual framework provides a useful tool for teaching and learni