In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein. We found that while metabolic pathways were consistently represented across kinetoplastids, individual proteins within those pathways may not universally exhibit evidence of glycosome localization.BACKGROUND Previously published work has demonstrated that the LPS injection of Ciona robusta leads to the overexpression of a truncated form of an immune-related mRNA (C8short) by means of Ciona robusta (CR) alternative polyadenylation (APA) (CR-APA). METHODS The 3D structure of the C8short-derived Ciona robusta chemo-attractive peptide (CrCP) was evaluated by homology modeling. The biological activity of the CrCP was studied in vitro using a primary human dermal cell line (HuDe). Real-Time PCR was used to investigate the expression levels of genes involved in cell motility. NF-κB signaling was studied by western blotting. RESULTS In silico modeling showed that CrCP displayed structural characteristics already reported for a short domain of the vertebrate CRK gene, suggesting its possible involvement in cell migration mechanisms. In vitro assays demonstrated that CrCP was capable of inducing the motility of HuDe cells in both wound healing and chemo-attractive experiments. qPCR demonstrated the capability of CrCP to modulate the expression of the matrix metalloproteinase-7 (MMP-7) and E-cadherin genes. Finally, western blot analysis demonstrated that treatment with CrCP induced activation of the NF-κB signaling pathway. CONCLUSION Our results describe the characterization of the 3D structure and chemo-attractive activity of an LPS-induced CrCP peptide from Ciona robusta.Sedentary behavior increases risk for non-communicable diseases; associations may differ within different contexts (e.g., leisure time, occupational). This study examined associations between different types of sedentary behavior and disease risk factors in women, using objectively measured accelerometer-derived sedentary data. A validation study (n = 20 women) classified sedentary behavior into four categories lying down; sitting (non-active); sitting (active); standing. A cross-sectional study (n = 348 women) examined associations between these classifications and disease risk factors (body composition, metabolic, inflammatory, blood lipid variables). Participants spent an average of 7 h 42 min per day in sedentary behavior; 58% of that time was classified as non-active sitting and 26% as active sitting. Non-active sitting showed significant (p ≤ 0.001) positive correlations with BMI (r = 0.244), body fat percent (r = 0.216), body mass (r = 0.236), fat mass (r = 0.241), leptin (r = 0.237), and negative correlations with HDL-cholesterol (r = -0.117, p = 0.031). Conversely, active sitting was significantly (p ≤ 0.001) negatively correlated with BMI (r = -0.300), body fat percent (r = -0.249), body mass (r = -0.305), fat mass (r = -0.320), leptin (r = -0.259), and positively correlated with HDL-cholesterol (r = 0.115, p = 0.035). In summary, sedentary behavior can be stratified using objectively measured accelerometer-derived activity data. Subsequently, different types of sedentary behaviors may differentially influence disease risk factors. https://www.selleckchem.com/products/mivebresib-abbv-075.html Public health initiatives should account for sedentary classifications when developing sedentary behavior recommendations.BACKGROUND Our 2004 survey of breast cancer survivors in the Katowice region (Poland) showed that the detection of the disease was triggered by self-examination in 58.9%, mammography in 19.2%, and clinical examination in 19.7% of cases. The purpose of the current study (2019/2020) was to determine if the implementation of national screening (mammography) in 2007 resulted in an increase of the relative contribution of mammography to detection of cancer. METHODS Subjects were 215 breast cancer patients, members of self-support groups in Katowice region. The questionnaire included questions on early detection of breast cancer, participation in screening, and socio-economic status. RESULTS Early detection of cancer was initiated by self-examination in 63.7%, mammography in 22.8%, clinical examination in 13.5% of subjects. Age at detection depended on the method (p less then 0.001) 54.1 ± 10.8 years for self-examination, 60.0 ± 7.6 years for mammography, and 58.7 ± 10.8 years for clinical examination. CONCLUSIONS Both in 2004 and 2020 self-examination is the most frequent method of early detection of breast cancer in the study area. The contribution of mammography remains on a low level (23%). This finding could be explained by a low participation in screening and by age of 50 years used as the entry criterion to national screening of breast cancer in Poland.Stem cell therapies offer a great promise for regenerative and reconstructive medicine, due to their self-renewal and differentiation capacity. Although embryonic stem cells are pluripotent, their utilization involves embryo destruction and is ethically controversial. Therefore, adult tissues that have emerged as an alternative source of stem cells and perinatal tissues, such as the umbilical cord, appear to be particularly attractive. Wharton's jelly, a gelatinous connective tissue contained in the umbilical cord, is abundant in mesenchymal stem cells (MSCs) that express CD105, CD73, CD90, Oct-4, Sox-2, and Nanog among others, and have the ability to differentiate into osteogenic, adipogenic, chondrogenic, and other lineages. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs) do not express MHC-II and exhibit immunomodulatory properties, which makes them a good alternative for allogeneic and xenogeneic transplantations in cellular therapies. Therefore, umbilical cord, especially Wharton's jelly, is a promising source of mesenchymal stem cells.