5-13% for the TDS approach and 5-15.2% and 7.5-12.2 for the MDS approach, respectively. Clearly, the data showed that soil quality degradation was encouraged and stimulated by the leachate. Among the different models of SQI applied in the present study, IQI determined by MDS was the optimal model to estimate soil quality and predict crop yields given the analysis of the correlations among the SQI models, the correlations between the SQI models and wheat yield, and sensitivity index values.Physical instabilities of proteins in the form of protein aggregation continue to be a major challenge in the development of protein drug candidates. Aggregation can occur during different stages of product lifecycle such as freeze-thaw, manufacturing, shipping, and storage, and can potentially delay commercialization of candidates. A lack of clear understanding of the underlying mechanism(s) behind protein aggregation and the potential immunogenic reactions renders the presence of aggregates in biotherapeutic products undesirable. Understanding and minimizing aggregation can potentially reduce immunogenic responses and make protein therapeutics safer. Therefore, it is imperative to identify, understand, and control aggregation during early formulation development and develop reliable and orthogonal analytical methodologies to detect and monitor levels of aggregation. Freezing and thawing are typical steps involved in the manufacturing of drug product and could result in complex physical and chemical changes, which in turn could potentially cause protein aggregation. This study provides a systematic approach in understanding and selecting the ideal freeze-thaw conditions for manufacturing of protein-based therapeutics. It identifies the importance of balancing different excipients with an overall goal of sufficiently reducing or eliminating aggregation and developing a stable and scalable formulation. The results demonstrated that the freeze-thaw damage of mAb-1 in aqueous solutions was significantly reduced by identification of optimal freeze-thaw conditions using first a small-scale model with subsequent at-scale verifications. The work provides a framework for successful transfer of drug product manufacturing process from small-scale to the manufacturing scale production environment especially for molecules that are susceptible to freeze-thaw induced degradations.Analysis of therapeutic IgG aggregates in serum is a potential area of investigation as it can give deeper insights about the function, immunogenic issues and protein interaction associated with the aggregates. To overcome various complexities associated with the existing analytical techniques for analyzing aggregates in serum, a novel florescence microscopy-based image processing approach was developed. The monoclonal antibody (mAb) was tagged with a fluorescent dye, fluorescein isothiocyanate (FITC). Aggregates, generated by stirring, were spiked into serum and images were captured at various time points. After denoising, thresholding by weighted median, 1D Otsu, and 2D Otsu was attempted and a modified 2D Otsu, a new mode of thresholding, was developed. This thresholding method was found to be highly effective in removing noises and retaining analyte sizes. https://www.selleckchem.com/products/cy-09.html Out of 0-255, the optimized threshold value obtained for the images discussed in modified 2D Otsu was 9 while 2D Otsu's overestimated values were 38 and 48. Other morphological operations were applied after thresholding and the area, perimeter, circularity, and radii of the aggregates in these images were calculated. The proposed algorithm offers an approach for analysis of aggregates in serum that is simpler to implement and is complementary to existing approaches.The initiation process of the mine water inrush accident, the essence of this process is the sudden change of the seepage state of the broken coal medium under pressure and the instability of the skeleton. In order to study the re-crushing mechanism and seepage characteristics of the broken coal medium under load, a set of three-axis seepage system was designed independently. Using the steady-state infiltration method, multiple flow factors under different particle size combinations and different stress conditions of the broken coal medium were obtained. The results of the study indicate in one hand, the reduction of the porosity of the broken coal medium will cause the flow channel to be rebuilt, and the sudden change of flow rate will directly lead to the non-Darcian flow behavior. The early stage of compaction mainly affects the permeability k value, and the later stage of compaction mainly affects the non-Darcian β value; On the other hand, the seepage throat in the broken coal medium may have a sharp increase in its flow rate, leading to a sudden change in the flow pattern. The critical Reynolds number is also used to determine whether non-Darcian flow is formed, and its value in the water inrush system is about 40-133; at the same time, the non-Darcian flow in the broken coal medium conforms to the Forchheimer-type flow law. By analyzing the dependence relationship between factors, a seepage factor representation algebraic relationship suitable for Forchheimer type non-Darcian flow of broken coal medium is given, which can be used as a calculation basis in the prevention and treatment of mine water inrush accidents.Metarhizium robertsii is an insect pathogen as well as an endophyte, and can antagonize the phytopathogen, Fusarium solani during bean colonization. However, plant immune responses to endophytic colonization by Metarhizium are largely unknown. We applied comprehensive plant hormone analysis, transcriptional expression and stomatal size analysis in order to examine plant immune responses to colonization by Metarhizium and/or Fusarium. The total amount of abscisic acid (ABA) and ABA metabolites decreased significantly in bean leaves by plant roots colonized by M. robertsii and increased significantly with F. solani compared to the un-inoculated control bean plant. Concomitantly, in comparison to the un-inoculated bean, root colonization by Metarhizium resulted in increased stomatal size in leaves and reduced stomatal size with Fusarium. Meanwhile, expression of plant immunity genes was repressed by Metarhizium and, alternately, triggered by Fusarium compared to the un-inoculated plant. Furthermore, exogenous application of ABA resulted in reduction of bean root colonization by Metarhizium but increased colonization by Fusarium compared to the control without ABA application.