https://www.selleckchem.com/products/BIBF1120.html New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.The α7 nicotinic acetylcholine receptor (nAChR) is a promising target for the treatment of cognitive deficits associated with psychiatric and neurological disorders, including schizophrenia and Alzheimer's disease (AD). Several α7 nAChR agonists and positive allosteric modulators (PAMs) have demonstrated procognitive effects in preclinical models and early clinical trials. However, despite intense research efforts in the pharmaceutical industry and academia, none of the α7 nAChR ligands has been approved for clinical use. This chapter will focus on the α7 nAChR ligands that have advanced to clinical studies and explore the reasons why these agents have not met with unequivocal clinical success.The prefrontal cortex underlies our high order cognitive abilities and is the target of projections from many neuromodulatory nuclei. The dorsolateral prefrontal cortex is particularly critical for rule representation and working memory, or the ability to hold information "in mind" in the absence of sensory input. Emerging evidence supports a prominent and permissive role for acetylcholine in these excitatory circuits, through actions at cholinergic nicotinic receptors. Here we review the involvement of acetylcholine in working memory via actions at nicotinic receptors.Human behavior can be controlled by physical or psychological dependencies associated with addiction. One of the most insidious addictions in our society is the use of tobacco products which contain nicotine. This addiction can be associated with specific receptors in the brain that respond to the natural neurotransmitter acetylcholine. These nicotinic acetylcholine receptors (nAChR) are ligand-g