https://www.selleckchem.com/products/tpx-0046.html [This corrects the article DOI 10.17912/micropub.biology.000349.].Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is frequently characterized by a marked inflammatory response with severe pneumonia and respiratory failure associated with multiorgan involvement. Some risk factors predispose patients to develop a more severe infection and to an increased mortality; among them, advanced age and male gender have been identified as major and independent risk factors for COVID-19 poor outcome. The renin-angiotensin-aldosterone system (RAAS) is strictly involved in COVID-19 because angiotensin converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 and also converts pro-inflammatory angiotensin (Ang) II into anti-inflammatory Ang(1-7). In this review, we have addressed the effect of aging and gender on RAAS with emphasis on ACE2, pro-inflammatory Ang II/Ang II receptor 1 axis and anti-inflammatory Ang(1-7)/Mas receptor axis. Ticks puncture the skin of their hosts and secrete saliva, containing antiplatelet proteins, into the blood. Here, we studied disagregin, a potent platelet-inhibiting protein derived from the salivary glands of , an African soft tick. Whereas conventional αIIbβ3 antagonists contain an Arg-Gly-Asp (RGD) sequence for platelet integrin binding, disagregin contains an Arg-Glu-Asp (RED) sequence, hypothesizing a different mode of inhibitory action. We aimed to compare the inhibitory effects of disagregin and its RGD variant (RGD-disagregin) on platelet activation and to unravel the molecular basis of disagregin-αIIbβ3 integrin interactions. Disagregin and RGD-disagregin were synthesized by tert-butyloxycarbonyl -based solid-phase peptide synthesis. Effects of both disagregins on platelet aggregation were assessed by light transmission aggregometry in human platelet-rich plasma. Whole-blood thrombus format