https://www.selleckchem.com/products/OSI-906.html Diet has an important role in host-microbiome interplay, which may result in intestinal permeability changes and physiopathological effects at a systemic level. Despite the importance of maternal microbiota as the main contributor to the initial microbial seeding, little is known about the effects of maternal diet during pregnancy on maternal-neonatal microbiota. This study aimed at ascertainingthe possible associations between maternal dietary intake during pregnancy and neonatal microbiota at birth and to evaluate the relationship with maternal intestinal markers. In a nested cross-sectional study in the longitudinal MAMI cohort, maternal-neonatal microbiota profiling at birth (nā€‰=ā€‰73) was assessed by 16S rRNA gene sequencing. Maternal intestinal markers as zonulin, intestinal alkaline phosphatase (IAP) activity and faecal calprotectin were measured in faeces. Furthermore, maternal-neonatal clinical and anthropometric data, as well as maternal nutrient intake during pregnancy obtained by FFQ questionnaires, were collected. Maternal diet is associated with both maternal and neonatal microbiota at the time of birth, in a delivery mode-dependent manner. The existing link between maternal diet, intestinal makers and neonatal gut microbiota would be mainly influenced by the intake of saturated (SFA) and monounsaturated fatty acids (MUFA). Members of Firmicutes in the neonatal microbiota were positively associated with maternal fat intake, especially SFA and MUFA, and negatively correlated to fibre, proteins from vegetable sources and vitamins. Maternal diet during pregnancy, mainly fat intake (SFA and MUFA), was related to intestinal markers, thus likely shifting the microbial transmission to the neonate and priming the neonatal microbial profile with potential health outcomes. NCT03552939. NCT03552939. Coffee is an important source of bioactive compounds, including caffeine, trigonelline, and phenolic compounds. Severa