https://www.selleckchem.com/products/anidulafungin-ly303366.html Background Nifedipine-induced gingival overgrowth (NGO) is a multifactorial pathogenesis with increased extracellular matrix including collagen and glycans, inflammatory cytokines, and phenotype changes of fibroblasts. However, the molecular etiology of NGO is not well understood. The objective of this study is to investigate the key genes in the pathogenesis of NGO. Methods In this study, we examined the proliferation and migration abilities of fibroblasts derived from patients with chronic periodontitis, nifedipine nonresponder gingival overgrowth, gingival overgrowth caused by nifedipine, and healthy normal gingiva. We conducted RNA-Seq on these four groups of fibroblasts and analysed the differentially expressed genes (DEGs). Results Fibroblasts derived from NGO patients had higher proliferation and migration abilities than those of the other groups. Protein-protein interaction network analysis indicated that TGFB2, ITGA8, ITGA11, FGF5, PLA2G4D, PLA2G2F, PTGS1, CSF1, LPAR1, CCL3, and NKX3-1 are involved in the development of NGO. These factors are related to the arachidonic acid metabolism and PI3K/AKT signaling pathways. Conclusion Transcriptional gene expression analysis identified a number of DEGs that might be functionally related to gingival overgrowth induced by nifedipine. Our study provides important information on the molecular mechanism underlying nifedipine-induced gingival overgrowth.Introduction Total joint arthroplasty is projected to expand rapidly by 2030. With large numbers of patients undergoing TJA, the choice of incisional closure has come into question. We compared the 2-Ocyl cyanoacrylate closure system of Dermabond ® Prineo ® with Exofin Fusion ® to compare rates of adverse wound outcomes after total joint arthroplasty. Secondary outcome measures were age, sex, and medical comorbidities between groups. Methods We retrospectively reviewed adverse wound outcomes with skin closu