3% on the membrane after filtration with 108 CFU mL-1 Escherichia coli and Staphylococcus aureus solution as feed, respectively. The coating layer and assembled nanocapsules endowed the membrane with improved lysozyme stability, anti-adhesion performance, and antibacterial activity. Stimuli-responsive lysozyme nanocapsule engineered microfiltration membranes show great potential for anti-biofouling in future practical application.Cancer is a dynamic disease with heterogenic molecular signatures and constantly evolves during the course of the disease. Single cell proteomic analysis could offer a suitable pathway to monitor cancer cell heterogeneity and deliver critical information for the diagnosis, recurrence, and drug-resistant mechanisms in cancer. Current standard techniques for proteomic analysis such as ELISA, mass spectrometry, and Western blots are time-consuming, expensive, and often require fluorescence labeling that fails to provide accurate information about the multiple protein expression changes at the single cell level. Herein, we report a surface-enhanced Raman spectroscopy-based simple microfluidic device that enables the screening of single circulating tumor cells (CTC) in a dynamic state to precisely understand the heterogeneous expression of multiple protein biomarkers in response to therapy. It further enables identifying intercellular heterogeneous expression of CTC surface proteins which would be highly informatierived CTCs and identifies heterogeneity within CTCs. More importantly, we find that a fraction of CTCs still shows a high expression of these receptor proteins during and after therapy, indicating the presence of resistant CTCs which may evolve after a certain time and progress the disease. We believe this automated assay will have high clinical importance in disease diagnosis and monitoring treatment and will significantly advance the understanding of cancer heterogeneity on the single cell level.Although various liver chips have been developed using emerging organ-on-a-chip techniques, it remains an enormous challenge to replicate the liver lobules with self-assembled perfusable hepatic sinusoid networks. Herein we develop a lifelike bionic liver lobule chip (LLC), on which the perfusable hepatic sinusoid networks are achieved using a microflow-guided angiogenesis methodology; additionally, during and after self-assembly, oxygen concentration is regulated to mimic physiologically dissolved levels supplied by actual hepatic arterioles and venules. This liver lobule design thereby produces more bionic liver microstructures, higher metabolic abilities, and longer lasting hepatocyte function than other liver-on-a-chip techniques that are able to deliver. We found that the flow through the unique micropillar design in the cell coculture zone guides the radiating assembly of the hepatic sinusoid, the oxygen concentration affects the morphology of the sinusoid by proliferation, and the oxygen gradient plays a key role in prolonging hepatocyte function. The expected breadth of applications our LLC is suited to is demonstrated by means of preliminarily testing chronic and acute hepatotoxicity of drugs and replicating growth of tumors in situ. This work provides new insights into designing more extensive bionic vascularized liver chips, while achieving longer lasting ex-vivo hepatocyte function.Osteoblasts actively generate cell traction force (CTF) to sense chemical and mechanical microenvironments. Fluid shear stress (FSS) is a principle mechanical stimulus for bone modeling/remodeling. https://www.selleckchem.com/products/deg-77.html FSS and CTF share common interconnected elements for force transmission, among which the role of the protein-material interfacial force (Fad) remains unclear. Here, we found that, on the low Fad surface (5.47 ± 1.31 pN/FN), CTF overwhelmed Fad to partially desorb FN, and FSS exacerbated the desorption, resulting in disassembly of the actin cytoskeleton and focal adhesions (FAs) to reduce CTF and establishment of a new mechanical balance at the FN-material interface. Contrarily, on the high Fad surface (27.68 ± 5.24 pN/FN), pure CTF or the combination of CTF and FSS induced no FN desorption, and FSS promoted assembly of actin cytoskeletons and disassembly of FAs, regaining new mechanical balance at the cell-FN interface. These results indicate that Fad is a mechanical regulator for transmission of CTF and FSS, which has never been reported before.Paper-based photodetectors have attracted extensive research interest owing to their environmentally friendly and highly deformable properties. Although perovskite crystals with outstanding optoelectronic properties have proved to be one of the most promising candidates for photodetectors, the development of paper-based photodetectors is hindered by the moisture absorptivity of paper and the instability of perovskite crystals in a humid atmosphere. In this study, we demonstrate a highly deformable and high-performance paper-based perovskite photodetector. The photodetector maintains its excellent performance even after exposure to a relative humidity of 60% for 120 h.The application of nanoparticles in the diagnosis and treatment of diseases has undergone different developmental stages, but phagocytosis and nonspecific distribution have been the main factors restricting the transformation of nanobased drugs into clinical practice. In the past decade, the design of membrane-coated nanoparticles has gained increasing attention. It is hoped that the combination of the cell membrane's natural biological properties and the functional integration of synthetic nanoparticle systems can compensate for the shortage of traditional nanoparticles. The membrane coating gives the nanoparticles unique biological functions such as immune evasion and targeting capability. However, when the encapsulation of monotypic membranes does not meet the diverse demands of biomedicine, the combination of different cell membranes may offer more possibilities. In this review, the composition, preparation, and advantages of biomimetic nanoparticles coated with hybrid cell membranes are summarized, and the applications of hybrid membrane-coated biomimetic nanoparticles (HM@BNPs) in drug delivery, phototherapy, liquid biopsy, tumor vaccines, immune therapy, and detoxification are reviewed. Finally, the current challenges and opportunities with regard to HM@BNPs are discussed.