https://www.selleckchem.com/products/KU-60019.html Two polysaccharides (cellulose and chitosan) and polyurethane dissolved in 1-ethyl-3-methylimidazolium chloride represented the matrix for the obtainment of new composite formulations comprised of lignin, ferrite-lignin hybrid and ketoconazole. The mechanical performances (Young's modulus and compressive strength) increased with the filler addition. The nature of the filler used in the studied formulations influenced both bioadhesion and mucoadhesion parameters. It was found that the incorporation of lignin and ferrite-lignin hybrid into the matrix has influenced the in vitro rate of ketoconazole release, which is described by the Korsmeyer-Peppas model. All materials exhibited activity against Gram positive (Staphylococcus aureus ATCC 25923) and Gram negative (Escherichia coli ATCC 25922) bacteria.Time-of-Flight (TOF) based Light Detection and Ranging (LiDAR) is a widespread technique for distance measurements in both single-spot depth ranging and 3D mapping. Single Photon Avalanche Diode (SPAD) detectors provide single-photon sensitivity and allow in-pixel integration of a Time-to-Digital Converter (TDC) to measure the TOF of single-photons. From the repetitive acquisition of photons returning from multiple laser shots, it is possible to accumulate a TOF histogram, so as to identify the laser pulse return from unwelcome ambient light and compute the desired distance information. In order to properly predict the TOF histogram distribution and design each component of the LiDAR system, from SPAD to TDC and histogram processing, we present a detailed statistical modelling of the acquisition chain and we show the perfect matching with Monte Carlo simulations in very different operating conditions and very high background levels. We take into consideration SPAD non-idealities such as hold-off time, afterpulsing, and crosstalk, and we show the heavy pile-up distortion in case of high background. Moreover, we also model