https://www.selleckchem.com/products/rhosin-hydrochloride.html Among two EPDMs, EPDM-Esprene based composites have shown comparatively better performance. Among all (phase-1-3) samples, E100K0VA (phase-2) has shown greater mechanical (stress 3.89 MPa; strain 774%), ablative (linear 0.1 mm/s; mass 0.05 g/s), and thermal (material left 91.0%) properties. Overall findings indicated improved properties of EPDM in the presence of vulkasil-C and may help to develop better heat resistant materials.In a high-pressure hydrogen environment, the sealing rubber material is swelled by hydrogen, and the mechanical and tribological properties are reduced, causing various problems in the sealing performance. The focus of this study was the effect of the filler type and content on the tribological characteristics of rubber after exposure to high-pressure hydrogen. Acrylonitrile butadiene rubber specimens were exposed to high-pressure hydrogen at 96.6 MPa, and the change in the amount of wear with time after exposure was observed. The wear test was performed using a pin-on-disc ball tip to measure the amount of wear before and after hydrogen exposure of the materials under fixed revolutions per minute and normal load. Scanning electron microscopy was used to observe the wear track and cross section of the specimen to examine the changes in the wear mechanism after hydrogen exposure and to analyze the wear mechanism for each filler. The results of this study are expected to contribute to the evaluation of the tribological properties of the sealing materials used in hydrogen environments.Fused deposition modeling (FDM), the most widely used additive manufacturing (AM) technology, is gaining considerable interest in the surgical sector for the production of single-use surgical devices that can be tailor-made according to specific requirements (e.g., type of patient surgery, specific shapes, etc.) due to its low cost, ease of access to materials (3D-printing filament), and the relatively