https://www.selleckchem.com/products/fasoracetam-ns-105.html nd provide an immunological perspective for individualized therapies. Andrographolide (Andro), a diterpenoid extracted from , has been shown to attenuate pulmonary fibrosis in rodents; however, the potential mechanisms remain largely unclear. This study investigated whether and how Andro alleviates bleomycin (BLM)-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and epithelial-mesenchymal transition (EMT) in the lung epithelial cells. The effects of Andro were evaluated in a rat model of BLM-induced pulmonary fibrosis. The roles of Andro in BLM-induced NLRP3 inflammasome activation, EMT and AKT/mTOR signaling were investigated using human alveolar epithelial A549 cells. We found that Andro significantly alleviated pulmonary edema and histopathological changes, decreased weight loss, and reduced collagen deposition. Andro downregulated the levels of NLRP3, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1 in the lungs of BLM-treated rats, suggesting the inhibitory effect of Andro on NLRP3 inflammasome activation . Additionally, the symptoms of BLM-mediated EMT phenotype in the lung were also attenuated after Andro administration. , Andro also markedly inhibited BLM-induced NLRP3 inflammasome activation and EMT in A549 cells. Moreover, Andro inhibited BLM-induced phosphorylation of AKT and mTOR in A549 cells, suggesting that AKT/mTOR inactivation mediates Andro-induced effects on BLM-induced NLRP3 inflammasome activation and EMT. These data indicate that Andro can reduce BLM-induced pulmonary fibrosis through suppressing NLRP3 inflammasome activation and EMT in lung epithelial cells via AKT/mTOR signaling pathway. These data indicate that Andro can reduce BLM-induced pulmonary fibrosis through suppressing NLRP3 inflammasome activation and EMT in lung epithelial cells via AKT/mTOR signaling pathway. An accurate diagnosis