https://www.selleckchem.com/products/byl719.html 8 and 99.0 h. Pathways of hydrolysis, hydroxylation, methoxylation, and substitution were confirmed for the aerobic biodegradation of these nonhalogenated OPEs, but only di-alkyl phosphates (DAPs) largely accumulated in culture medium as the most predominant transformation products. Phylotypes in Klebsiella were significantly more abundant during OPE biodegradation than in the initial sludge, which indicated that these microorganisms are associated with the biodegradation of nonhalogenated OPEs in sludge culture. Biodegradation of all investigated nonhalogenated OPEs was associated with a significant reduction in the residual toxicity to Vibrio fischeri, indicating a rather positive ecotoxicological outcome of the aerobic biotransformation processes achieved by the enriched sludge culture.Pond-ditch circulation systems (PDCSs) were proved to be an appropriate operation selection in rural wastewater remediation. However, the biological dephosphorization process has not been investigated and quantified in PDCSs. In this study, PDCSs exhibited higher total phosphorus (TP) removal efficiencies (77.8%-97.4%). The activities of polyphosphate kinase (PPK) and exopolyphosphatase (PPX) tightly associated with phosphorus biological removal ranged from 0.356 to 11.844 μmol hydroxamic acid min-1 mg-1 protein, and 0.008 to 0.446 μmol p-nitrophenol min-1 mg-1 protein, respectively. Both PPK and PPX in PDCSs increased with time, peaked at day 30, and then declined, and were negatively correlated with sediment total phosphorus (STP), sediment inorganic phosphorus (SIP), P bound to Al/Fe/Mn oxides and hydroxides (NaOH-P), P associated with Ca (HCl-P), and organic matter (OM) (p less then 0.05). Results of high-throughput sequencing suggested that Bacillus (0.46%-19.77%) and Clostridium (0.40%-21.0%) genus miestimated indirect pathway influencing on biological dephosphorization process in PDCSs.Two factors complicate the ecological sta