https://www.selleckchem.com/products/blu-451.html Nanoparticle spatial distribution also determines the stability of Pd-TiO2 photocatalysts, because nonuniformly distributed nanoparticles sinter while uniformly distributed nanoparticles do not. This work introduces new tools to evaluate and understand catalyst collective (ensemble) properties in powder catalysts, which thereby pave the way to more active and stable heterogeneous catalysts.The spectroscopic study of oxygen, a vital element in materials, physical, and life sciences, is of tremendous fundamental and practical importance. 17O solid-state NMR (SSNMR) spectroscopy has evolved into an ideal site-specific characterization tool, furnishing valuable information on the local geometric and bonding environments about chemically distinct and, in some favorable cases, crystallographically inequivalent oxygen sites. However, 17O is a challenging nucleus to study via SSNMR, as it suffers from low sensitivity and resolution, owing to the quadrupolar interaction and low 17O natural abundance. Herein, we report a significant advance in 17O SSNMR spectroscopy. 17O isotopic enrichment and the use of an ultrahigh 35.2 T magnetic field have unlocked the identification of many inequivalent carboxylate oxygen sites in the as-made and activated phases of the metal-organic framework (MOF) α-Mg3(HCOO)6. The subtle 17O spectral differences between the as-made and activated phases yield detailed information about host-guest interactions, including insight into nonconventional O···H-C hydrogen bonding. Such weak interactions often play key roles in the applications of MOFs, such as gas adsorption and biomedicine, and are usually difficult to study via other characterization routes. The power of performing 17O SSNMR experiments at an ultrahigh magnetic field of 35.2 T for MOF characterization is further demonstrated by examining activation of the MIL-53(Al) MOF. The sensitivity and resolution enhanced at 35.2 T allows partially and