https://www.selleckchem.com/products/Tranilast.html Tumor necrosis factor-alpha (TNF-α), a major inflammatory factor released from activated retinal glial cells, is implicated in the pathogenesis of glaucoma. In this study, we investigated whether and how TNF-α may affect functional conditions of activated retinal Müller cells. Our results showed that in the group I metabotropic glutamate receptor (mGluR I) agonist DHPG-activated cultured Müller cells, TNF-α treatment aggravated cell gliosis, as evidenced by significantly increased expression of glial fibrillary acidic protein (GFAP). TNF-α treatment of the DHPG-activated Müller cells decreased cell proliferation and induced cell apoptosis. In normal Müller cells, TNF-α treatment increased the mRNA levels of leukocyte inhibitory factor (LIF), intercellular cell adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and chemokine C-C-motif ligand 2 (CCL2), which could be significantly attenuated when Müller cells were pre-activated. However, TNF-α-induced elevation in mRNA levels of inflammatory factors, such as TNF-α, inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6), in normal Müller cells still kept higher levels when Müller cells were pre-activated. Furthermore, the TNF-α-induced changes of cytokines were partially mediated by NF-κB signaling pathway. Our results suggest that TNF-α may promote gliosis and inflammatory response of activated Müller cells, thus aggravating RGC injury in glaucoma.Breast cancer is a malignant disease and a great cause of morbidity and mortality in women. The etiology of breast cancer is complex and closely related to people's living habits. Lapatinib, a tyrosine-kinase inhibitor, blocks the activation of the HER1 and HER2 tyrosine kinase to inhibit the activation of downstream signaling pathways and thus inhibit tumor survival and proliferation. This study aimed to explore to the combination of lapatinib and luteolin on human breast cancer. The combination of