https://www.selleckchem.com/products/Cladribine.html OBJECTIVE Despite the promise of PARP inhibitors (PARPi) for treating BRCA1/2 mutated ovarian cancer (OC), drug resistance invariably develops. We hypothesized rationale drug combinations, targeting key molecules in DNA repair pathways and the cell cycle may be synergistic and overcome acquired PARPi resistance. METHODS Drug sensitivity to PARPi alone and in combination with inhibitors of key DNA repair and cell cycle proteins, including ATR (VE-821), Chk1 (MK-8776), Wee1 (MK-1775), RAD51 (RI-1) was assessed in PARPi-sensitive (UWB1) and -resistant (UWB1-R) gBRCA1 mutant OC cell lines using a cell proliferation assay. The Bliss synergy model was used to estimate the two-drug combination effect and pharmacologic synergy (Bliss score ≥ 0) or antagonistic (Bliss score ≥ 0) response of the PARPi in combination with the inhibitors. RESULTS IC50 for olaparib alone was 1.6 ± 0.9 µM compared to 3.4 ± 0.6 µM (p = 0.05) for UWB1 and UWB1-R cells, respectively. UWB1-R demonstrated increased sensitivity to ATRi (p = 0.04) compared to UWB1. Olaparib (0.3-1.25 µM) and ATRi (0.8-2.5 µM) were synergistic with Bliss scores of 17.2 ± 0.2, 11.9 ± 0.6 for UWB1 and UWB1-R cells, respectively. Olaparib (0.3-1.25 µM) and Chk1i(0.05-1.25 µM) were synergistic with Bliss scores of 8.3 ± 1.6, 5.7 ± 2.9 for UWB1 and UWB1-R cells, respectively. CONCLUSIONS Combining an ATRi or Chk1i with olaparib is synergistic in both PARPi-sensitive and -resistant BRCA1 mutated OC cell models, and are rationale combinations for further clinical development.Salt stress is one of the major environmental factors impairing crop production. In our previous study, we identified a major QTL for salinity tolerance on chromosome 2H on barley (Hordeum vulgare L.). For further investigation of the mechanisms responsible for this QTL, two pairs of near-isogenic lines (NILs) differing in this QTL were developed. Sensitive NILs (N33 and N53) showed more severe damage aft