https://www.selleckchem.com/products/Pyroxamide(NSC-696085).html Here, hybrid materials consisting of cubic phases with monoacylglycerol lipids of different chain lengths formulated with a potent lipase inhibitor tetrahydrolipstatin were designed. Modulation of the release of a hydrophobic model pharmaceutical, a clofazimine salt, was obtained by exploiting the matrices' enzyme-driven digestion. A stable cubic phase is described, displaying controlled degradation with at least a 4-fold improvement compared to the blank systems shown in inhibitor-containing cubic systems. Sustained release of the model hydrophobic pharmaceutical was studied over 30 days to highlight the advantage of incorporating an inhibitor into the cubic network to achieve tunable lipid release systems. This is done without negatively affecting the structure of the matrix itself, as shown by comprehensive small-angle x-ray scattering experiments. Unsupported nanoparticles are now recognized as model catalysts to evaluate the intrinsic activity of metal particles, irrespectively of that of the support. Co nanoparticles with different morphologies, rods, diabolos and cubes have been prepared by the polyol process and tested for the acceptorless catalytic dehydrogenation of alcohols under solvent-free conditions. Rods crystallize with the pure hcp structure, diabolos with a mixture of hcp and fcc phases, while the cubes crystallize in a complex mixture of hcp, fcc and ε-Co phases. All the cobalt particles are found to be highly selective towards the oxidation of a model secondary alcohol, octan-2-ol, into the corresponding ketone while no significant activity is found with octan-1-ol. Our results show the strong influence of particle shape on the activity and catalytic stability of the catalysts Co nanorods display the highest conversion (85%), selectivity (95%) and recyclability compared to Co diabolos and Co cubes. We correlate the nanorods excellent stability with a strong binding of carboxylate l