Purpose The purpose of the current study was to examine normative nasalance values in Vietnamese adult speakers with Southern dialect and to investigate the effects of vowels and tones on nasalance. Previous studies examining nasalance have been mainly conducted with Indo-European languages. Limited information on nasalance is available in tone languages other than Chinese. Furthermore, tone and vowel effects on nasalance scores in tone languages have not been fully examined. Method Nasalance scores of various speech stimuli including passages, syllables, and prolonged vowels were obtained from Vietnamese-speaking adults with Southern dialect (M age = 23 years) using a nasometer (KayPENTAX 6450). Results The average nasalance scores of Southern Vietnamese adult speakers were 24.16%, 38.17%, and 70.03% for the oral, oral-nasal, and nasal passages, respectively. Southern Vietnamese speakers produced the highest nasalance scores on the vowel /a/, followed by /i/ and /u/. Nasalance scores of stimuli produced with the falling and restricted tone were significantly lower than those produced with the other tones. Conclusions The normative nasalance values of the current study will contribute as a reference index for the Vietnamese language. The effects of vowels and tones can also provide insight into the development of nasalance testing stimuli and for characterizing nasalance values across languages.A highly efficient approach to C(sp3)-C(sp3) bond construction via on-DNA photoredox catalysis between on-DNA alkenes and N-aryl tertiary amines was developed. The methodology demonstrated 55%-95% conversions without obvious DNA damage, as seen by qPCR tests. Furthermore, various functional groups, such as carboxylic acids, aldehydes, and aryl halides, that can be used to create library diversities were shown to be tolerant of the C-H activation conditions.Infections caused by drug-resistant bacteria seriously endanger human health and global public health. Therefore, it is urgent to discover and develop novel antimicrobial agents to combat multidrug-resistant bacteria. In this study, we designed and synthesized a series of new membrane-active bakuchiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. The most promising compound 28 displayed potent antibacterial activity against both Gram-positive bacteria (minimum inhibitory concentration, MIC = 1.56-3.125 μg/mL) and Gram-negative bacteria (MIC = 3.125 μg/mL), very weak hemolytic activity, and low cytotoxicity. Compound 28 had rapid bactericidal properties and avoided bacterial resistance. More importantly, compound 28 showed strong in vivo antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa in murine corneal infection models. This design strategy is expected to provide an effective solution to the antibiotic crisis.Immunoglobulin G (IgG) glycosylation is studied in biological samples to develop clinical markers for precision medicine, for example, in autoimmune diseases and oncology. Inappropriate storage of proteins, lipids, or metabolites can lead to degradation or modification of biomolecular features, which can have a strong negative impact on accuracy and precision of clinical omics studies. Regarding the preservation of IgG glycosylation, the range of appropriate storage conditions and time frame is understudied. Therefore, we investigated the effect of storage on IgG Fc N-glycosylation in the commonly analyzed biofluids, serum and plasma. Short-term storage and accelerated storage stability were tested by incubating samples from three healthy donors under stress conditions of up to 50 °C for 2 weeks using -80 °C for 2 weeks as the reference condition. All tested IgG glycosylation features-sialylation, galactosylation, bisection, and fucosylation-remained unchanged up to room temperature as well as during multiple freeze-thaw cycles and exposure to light. Only when subjected to 37 °C or 50 °C for 2 weeks, galactosylation and sialylation subtly changed. Therefore, clinical IgG glycosylation analysis does not rely as heavily on mild serum and plasma storage conditions and timely analysis as many other omics analyses.Carbapenems stand as one of the last-resort antibiotics; however, their efficacy is threatened by the rising number and rapid spread of carbapenemases. Effective antimicrobial stewardship thus calls for rapid tests for these enzymes to aid appropriate prescription and infection control. Herein, we report the first effective pan-carbapenemase reporter CARBA-H with a broad scope covering all three Ambler classes. Using a chemical biology approach, we demonstrated that the absence of the 1β-substituent in the carbapenem core is key to pan-carbapenemase recognition, which led to our rational design and probe development. CARBA-H provides a dual colorimetric-fluorogenic response upon carbapenemase-mediated hydrolysis. A clear visual readout can be obtained within 15 min when tested against a panel of carbapenemase-producing Enterobacteriaceae (CPE) clinical isolates that notably includes OXA-48 and OXA-181-producing strains. https://www.selleckchem.com/products/gdc-0084.html Furthermore, CARBA-H can be applied to the detection of carbapemenase activity in CPE-spiked urine samples.Terpyridine platinum (TP)-based chemotherapeutic agents target three-dimensional structures on DNA known as G-quadruplexes. We report the rational design and synthesis of a TP conjugate combined with copper-64 (64Cu), the decay characteristics of which include emission of β- and Auger electrons for radiotherapy and β+ particles for positron emission tomography (PET) imaging. The present experimental studies show that the novel [64Cu]Cu-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-TP is stable, permitting selective killing of cancer cells. The antitumor activity of [64Cu]Cu-NOTA-TP at high apparent molar activity is in the low nanomolar range and 27,800-fold greater than that of natCu-NOTA-TP at 24 h post treatment. These results suggest that this combination of a cytotoxic TP agent with 64Cu has considerable potential for cancer treatment and PET imaging.A general, versatile and automated computational algorithm to design any type of multiwall nanotubes of any chiralities is presented for the first time. It can be applied to rolling up surfaces obtained from cubic, hexagonal, and orthorhombic lattices. Full exploitation of the helical symmetry permits a drastic reduction of the computational cost and therefore opens to the study of realistic systems. As a test case, the structural, electronic, mechanical, and transport properties of multiwall carbon nanotubes (MWCNT) are calculated using a density functional theory approach, and results are compared with those of the corresponding layered (graphene-like) precursors. The interaction between layers has a general minimum for the inter-wall distance of ≈3.4 Å, in good agreement with experimental and computed optimal distances in graphene sheets. The metallic armchair and semiconductor zigzag MWCNT are almost isoenergetic and their stability increases as the number of walls increases. The vibrational fingerprint provides a reliable tool to identify the chirality and the thickness of the nanostructures.