Previous studies showed that three clonal strain types (I, II, and III) of Toxoplasma gondii can be distinguished using serotyping based on a series of polymorphic proteins. However, to establish a systematic serotyping method with higher resolution even being equal to that of genotyping, more specific peptide markers are needed. The objective of the present study was to determine the possibility of the polymorphic dense granule protein 15 (GRA15) for diagnosis and serotyping of T. gondii infection. Three different T. gondii GT1 strain GRA15 gene fragments encoding a 584-residue peptide, a 199-residue peptide and a 84-residue peptide were amplified, expressed and purified, respectively. Anti-T. gondii GT1 strain antibodies, anti-T. gondii RH strain antibodies and anti-T. gondii PRU strain antibodies were used for immunoblotting analysis of the three peptides. Western blotting analysis showed that the 584-residue peptide of GT1 strain GRA15 was a potential candidate for serological diagnosis of T. gondii infection. RH strain from GT1 strain could be distinguished by serotyping based on the GRA15199 or GRA1584, and T. gondii GT1 strain could be distinguished from PRU strain by using serotyping based on the GRA1584. These findings reveal, for the first time, a novel potential role of GRA15-derived peptides in diagnosis and serological differentiation of T. gondii infection. Pneumonia in bovines is a multifactorial disease manifestation leading to heavy economic losses. Infections of bovine respiratory syncytial virus (BRSV) and bovine parainfluenza virus-3 (BPI-3) are among the important contributing factors for the development of pneumonia in young animals. These viral agents either primarily cause pneumonia or predispose animals to the development of pneumonia. Although, the role of BRSV and BPI-3 in the pathogenesis of pneumonia is well established, there are no reports of involvement of BRSV and BPI-3 from Indian cattle and buffaloes suffering from pneumonia. In the present investigation, we performed postmortem examinations of 406 cattle and buffaloes which were below twelve months of age. Out of 406 cases, twelve (2.95%) cases were positive for BRSV and fifteen (3.69%) cases were positive for BPI-3, screened by reverse transcriptase polymerase chain reaction (RT-PCR). Further, positive cases were confirmed by sequence analysis of RT-PCR amplicons and direct immunofluorescey with already available sequences in the NCBI database. It is the first report of detection of BRSV and BPI-3 from pneumonic cases by RT-PCR and d-FAT from cattle and buffaloes of India, indicating the need for more epidemiological studies. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important porcine viruses worldwide. https://www.selleckchem.com/products/CP-673451.html Recently, severe PRRS outbreaks had occurred in two farms located in eastern and southern Thailand where stringent vaccination had been routinely practiced. Genetic analysis of GP5 identified two highly virulent PRRSVs designated as NA/TH/S001/2015 and NA/TH/E001/2016 from the southern and eastern farms, respectively. Both incidences were the first outbreaks of severe PRRSV since the implementation of the modified live virus (MLV) vaccine, indicating the concurrent emergence of immune-escape viruses. The genetics of the two PRRSV variants, the previous studied sequences from Thailand, and the reference strains were characterized with a focus on the GP5 and NSP2 genes. The results indicated that NA/TH/S001/2015 and NA/TH/E001/2016 shared less than 87% nucleotide similarity to the MLV and PRRSV type 2, lineages 1 and 8.7 (NA), respectively. A comparative analysis of the retrospective GP5 sequences categorized the PRRSVs into five groups based on the clinical outcomes, and both of the novel PRRSV strains were in the same group. Epitope A, T cell epitope, and N-linked glycosylation patterns within GP5 of both PRRSV variants were highly variable and significantly differed from those of MLV. As observed in highly virulent type 2 strains, NA/TH/S001/2015 contained a single amino acid deletion at position 33 in the hypervariable region 1 (HV-1) of GP5. Amino acid analysis of the hypervariable region of NSP2 revealed that NA/TH/E001/2016 had a unique deletion pattern that included two discontinuous deletions a 127-amino acid deletion from residues 301 to 427 and a single amino acid deletion at position 470. These results indicate the emergence of two novel PRRSV strains and highlight the common genetic characteristics of the immune-escaping PRRSV variants. BACKGROUND The anatomy of soft tissues around dental implants is extremely important to prevent inflammatory periimplant diseases and ensure healthy, stable and long-term survival of a dental implant. Various methods and materials for increasing the physiological thickness of tissues have been described including connective tissue graft (CTG) and xenogenic collagen matrix (XCM). While assessing various materials it is necessary to establish objective measurement method to determine the minimum amount of tissue thickness to maintain a stable level of bone around the implant. The aim of the study was to determine the effect of soft tissues in the implant area on the marginal bone level in the implant area and to define of the critical gingival thickness to minimize marginal bone level (MBL) loss. METHODS 75 bone level implants (Conelog® Camlog, Switzerland) were inserted in the aesthetic area. Thickening of soft tissues was performed using CTG and XCM. 12 months after the loading with final restoration, the thickness of soft tissues in the implant area was examined with ultrasound USG device (Pirop®, Echoson, Poland), and each implant was subjected to RVG examination, where MBL loss was determined. RESULTS A tendency to occur less MBL loss was found when thicker gingiva was present. The higher soft tissue thickness was, the lower MBL loss has occurred. A critical value for tissue thickness was determined as TKT ≤ 2.88. CONCLUSIONS In case of thin biotype soft tissue augmentation is required when value of tissue thickness in ultrasound measure is less than 2.88 mm.