Clearly, no one model of care is possible during all pandemic phases or in all medical environments. In this review we will discuss on available data and their impact on prioritizing the individual management for lung cancer patients, with aim to protect them from COVID-19.Genetic alterations in mesenchymal-epithelial transition (MET) are commonly found in solid tumors, especially in non-small cell lung cancer (NSCLC). However, agents targeting MET have not progressed until recently. Advancements in our understanding of the role of various MET aberrations in carcinogenesis have allowed MET-directed therapy to find its way to clinic use. Of all MET alterations, MET exon 14 skipping (METex14 skip+ or MET∆ 14 ), stands out as a true oncogenic driver. Recently, MET tyrosine kinase inhibitors (TKI) targeting METex14 skipping were able to demonstrate significant improvement in clinical outcomes including response rate and progression free survival. Of these, capmatinib was granted accelerated approval by the FDA in May 2020 for patients with advanced NSCLC harboring METex14 skip alterations. Tepotinib, another TKI, has shown significant activity in a phase II trial and received breakthrough therapy designation from the FDA in September 2019. MET amplification (METAmp ) and overexpression are usually a late phenomenon in tumorigenesis and aggravate malignant properties of transformed cells. Capmatinib and savolitinib have shown activity in patients with NSCLC with high levels of METAmp . Several other agents are being developed and under evaluation in clinical trials involving multiple tumor types. In addition to TKIs, MET overexpression is also an appealing target for development of antibody conjugated chemotherapy. Understanding the mechanisms of resistance to MET TKIs and alterations in anti-tumor immunity through MET inhibition are clinically relevant areas that need further exploration.Lung cancer is the deadliest malignancy worldwide, accounting for almost 20% of all cancer deaths. Clinical trials, such as NLST and NELSON, have proved the survival benefit of lung cancer screening using low-dose computed tomography (LDCT), and most of the lung cancer screening guidelines recommended annual lung cancer screening by LDCT for high-risk individuals. However, a relatively high proportion of lung cancer patients do not have risk factors, and it is questionable whether non-high-risk individuals should receive LDCT screening. In this review, we reviewed risk factors of lung cancer and summarized the benefits and potential harms of LDCT screening. After clarifying the differences between China and western countries in lung cancer screening, we recommended that non-high-risk individuals should receive LDCT screening with an interval of five to ten years. To better balance benefits and harms from LDCT screening, we also proposed a flexible screening strategy using LDCT based on lung cancer risk. Hopefully, it may help reduce unnecessary radiation exposure from CT scans while decreasing mortality of lung cancer.Lung cancer is a kind of malignant tumor with rapid progression and poor prognosis. Distant metastasis has been the main cause of mortality among lung cancer patients. Bone is one of the most common sites. Among all lung cancer patients with bone metastasis, most of them are osteolytic metastasis. Some serious clinical consequences like bone pain, pathological fractures, spinal instability, spinal cord compression and hypercalcemia occur as well. Since the severity of bone metastasis in lung cancer, it is undoubtedly necessary to know how lung cancer spread to bone, how can we diagnose it and how can we treat it. Here, we reviewed the process, possible mechanisms, diagnosis methods and current treatment of bone metastasis in lung cancer. We divided the process of bone metastasis in lung cancer into three steps tumor invasion, tumor cell migration and invasion in bone tissue. It may be influenced by genetic factors, microenvironment and other adhesion-related factors. Imaging examination, laboratory examination, and pathological examination are used to diagnose lung cancer metastasis to bone. Surgery, radiotherapy, targeted therapy, bisphosphonate, radiation therapy and chemotherapy are the common clinical treatment methods currently. https://www.selleckchem.com/products/ipi-549.html We also found some problems remained to be solved. For example, drugs for skeletal related events mainly target on osteoclasts at present, which increase the ratio of patients in osteoporosis and fractures in the long term. In all, this review provides the direction for future research on bone metastasis in lung cancer. Accurately predicting the risk level for a lymph node metastasis is critical in the treatment of non-small cell lung cancer (NSCLC). This study aimed to construct a novel nomogram to identify patients with a risk of lymph node metastasis in T1-2 NSCLC based on positron emission tomography/computed tomography (PET/CT) and clinical characteristics. From January 2011 to November 2017, the records of 318 consecutive patients who had undergone PET/CT examination within 30 days before surgical resection for clinical T1-2 NSCLC were retrospectively reviewed. A nomogram to predict the risk of lymph node metastasis was constructed. The model was confirmed using bootstrap resampling, and an independent validation cohort contained 156 patients from June 2017 to February 2020 at another institution. Six factors [age, tumor location, histology, the lymph node maximum standardized uptake value (SUVmax), the tumor SUVmax and the carcinoembryonic antigen (CEA) value] were identified and entered into the nomogram. The nomogram developed based on the analysis showed robust discrimination, with an area under the receiver operating characteristic curve of 0.858 in the primary cohort and 0.749 in the validation cohort. The calibration curve for the probability of lymph node metastasis showed excellent concordance between the predicted and actual results. Decision curve analysis suggested that the nomogram was clinically useful. We set up and validated a novel and effective nomogram that can predict the risk of lymph node metastasis for individual patients with T1-2 NSCLC. This model may help clinicians to make treatment recommendations for individuals. We set up and validated a novel and effective nomogram that can predict the risk of lymph node metastasis for individual patients with T1-2 NSCLC. This model may help clinicians to make treatment recommendations for individuals.