https://www.selleckchem.com/products/NXY-059.html Experimental results have verified the benefits of the proposed method.Text classification is a fundamental and important area of natural language processing for assigning a text into at least one predefined tag or category according to its content. Most of the advanced systems are either too simple to get high accuracy or centered on using complex structures to capture the genuinely required category information, which requires long time to converge during their training stage. In order to address such challenging issues, we propose a dynamic embedding projection-gated convolutional neural network (DEP-CNN) for multi-class and multi-label text classification. Its dynamic embedding projection gate (DEPG) transforms and carries word information by using gating units and shortcut connections to control how much context information is incorporated into each specific position of a word-embedding matrix in a text. To our knowledge, we are the first to apply DEPG over a word-embedding matrix. The experimental results on four known benchmark datasets display that DEP-CNN outperforms its recent peers.The detection of protein complexes is of great significance for understanding the cellular organizations and protein functions. Most of the existing methods just search the local topological information to mine dense subgraphs as protein complexes, ignoring the global topological information. To tackle this issue, we propose the DPCMNE method to detect protein complexes via multi-level network embedding. It can preserve both the local and global topological information of biological networks. First, DPCMNE employs a hierarchical compressing strategy to recursively compress the input protein-protein interaction (PPI) network into multi-level smaller PPI networks. Then, a network embedding method is applied on these smaller PPI networks to learn protein embeddings of different levels of granularity. The embeddings learned from all