https://www.selleckchem.com/products/loxo-292.html There were 64,340 reports of natural menopause throughout 1,059,229 person-years of follow-up. In fully adjusted models, a 10 μg/m3 increase in the cumulative average exposure to PM10 (HR 1.02, 95% CI 1.00, 1.04), PM2.5-10 (HR 1.03, 95% CI 1.00, 1.05), and PM2.5 (HR 1.03, 95% CI 1.00, 1.06) and living within 50 m to a major road at age 40 (HR 1.03, 95%CI 1.00, 1.06) were associated with slightly earlier menopause. No statistically significant effect modification was found, although the associations of PM were slightly stronger for women who lived in the West and for never smokers. To conclude, we found exposure to ambient PM and traffic in midlife was associated with slightly earlier onset of natural menopause. Our results support previous evidence that exposure to air pollution and traffic may accelerate reproductive aging.Aging is a leading cause of mortality for the elderly and DNA methylation age is reported to be predictive of biological aging. However, few studies have investigated the associations between multiple metals exposure and accelerated aging in the elderly. We performed a pilot study of 288 elderly participants aged 50-115 years and measured genome-wide DNA methylation and 22 blood metals concentrations. Measures of DNA methylation age were estimated using CpGs from Illumina HumanMethylation EPIC BeadChip. Linear mixed regression and Bayesian kernel machine regression (BKMR) models were used to estimate the individual and overall associations between multiple metals and accelerated methylation aging. Single metal models revealed that each 1-standard deviance (SD) increase in log-transformed vanadium, cobalt, nickel, zinc, arsenic, and barium was associated with a -2.256, -1.318, 1.004, -1.926, 1.910 and -1.356 changes in ΔAge, respectively; meanwhile, for aging rate, the change was -0.019, -0.013, 0.010, -0.018, 0.023, and -0.012, respectively (all P less then 0.05). The BKMR models showed reverse U