https://www.selleckchem.com/products/relacorilant.html These profiles also provide interesting data concerning azole susceptibility of Cryptococcus neoformans species complex, showing comparable MIC distributions for the three species but lower MIC50s and MIC90s for serotype D (n = 208) compared to serotype A (n = 949) and AD hybrids (n = 177). Finally, these data provide useful information for rare and/or emerging species, such as Clavispora lusitaniae (n = 221), Saprochaete clavata (n = 184), Meyerozyma guilliermondii complex (n = 150), Candida haemulonii complex (n = 87), Rhodotorula mucilaginosa (n = 55), and Wickerhamomyces anomalus (n = 36).The high interindividual variability in the pharmacokinetics (PK) of linezolid has been described, which results in an unacceptably high proportion of patients with either suboptimal or potentially toxic concentrations following the administration of a fixed regimen. The aim of this study was to develop a population pharmacokinetic model of linezolid and use this to build and validate alogorithms for individualized dosing. A retrospective pharmacokinetic analysis was performed using data from 338 hospitalized patients (65.4% male, 65.5 [±14.6] years) who underwent routine therapeutic drug monitoring for linezolid. Linezolid concentrations were analyzed by using high-performance liquid chromatography. Population pharmacokinetic modeling was performed using a nonparametric methodology with Pmetrics, and Monte Carlo simulations were employed to calculate the 100% time >MIC after the administration of a fixed regimen of 600 mg administered every 12 h (q12h) intravenously (i.v.). The dose of linezolid needed to achieve a PTA ≥ 90% for all susceptible isolates classified according to EUCAST was estimated to be as high as 2,400 mg q12h, which is 4 times higher than the maximum licensed linezolid dose. The final PK model was then used to construct software for dosage individualization, and the performance of the software was assess