These results indicate methanotrophs can aerobically degrade NTO and DNAN via one or more (nitro)reductases, with sMMO serving a supporting role deriving reducing equivalents from methane. This finding is important because methanotrophic bacteria are widely dispersed, and may represent a previously unrecognized route of NTO and DNAN biotransformation in aerobic environments.A novel catalytic system for benzene oxidation at low temperature is constructed by combining electric field with Pt-Ce-Zr nano-catalyst. The 1 wt% Pt/Ce0.75Zr0.25O2 catalyst assisted by electric field shows the best catalytic performance with 90% benzene conversion at 96.5 °C and excellent water resistance. The effect of electric field on catalysts and catalytic process is comprehensively investigated. The results of XRD, TEM, XPS and H2-TPR reveal that the electric field show negligible influence on the crystal structure and surface morphology of the catalyst, but it can lead to more oxygen vacancies. Therefore, more adsorbed oxygen with higher activity will be produced on the catalyst surface. The redox performance is improved due to the fact that valence distribution of Pt is changed in forms of more active sites composed of high valence oxides (PtO) generated in electric field. In situ DRIFTS is used to investigate the oxidation process of benzene and the results prove that electric field could accelerate the production and consumption of intermediate products, and produce new intermediate products such as carboxylic acid species, indicating that the introduction of electric field may open up a new rapid reaction path and promote the activation of benzene at low temperature.Produced water is a major waste problem in oil production yet it also represents a potential water source if treated properly, especially in arid regions. In this study, we investigate the anaerobic treatability of an oil-produced water with extremely high chemical oxygen demand (COD) and total dissolved organic carbon (TOC) from Wyoming's Greater Green River Basin using anaerobic microcosms inoculated with a microbial consortium derived from a brewery wastewater treatment facility. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html The results demonstrate that for this water and an appropriate microbial inoculation, high-COD/TOC can be effectively removed with concomitant energy recovery as a form of methane. 93% and 89% of the COD and TOC were removed with a final high methane yield of 33.9 mmol/g carbon (848 μmol/g carbon/day). Chemical analyses showed that the ethylacetate-extractable compounds were much more amenable to biodegradation than the CH2Cl2 extractable compounds. Furthermore, compounds that were added during drilling and completion remained in the water and contributed significantly to the COD and anaerobic degradability. This study demonstrates that produced waters are amenable to anaerobic biological treatment and also that thorough chemical analyses are necessary to fully understand the potential for treatment.Nitroalkanes are important industrial raw materials but also toxic pollutants, which are difficult to degrade once released into the environment. In this study, to significantly improve the degradation-efficiency of multiple nitroalkanes, a facultative anaerobe was genetically engineered, possible influencing factors and simulated application experiments of bioreactor were tested and evaluated. Among all engineered recombinants, the most effective strains NG-S1 (anaerobic) and NG-S2 (aerobic) displayed 2-fold and 2.8-fold final degradation rates higher than the wild type, respectively. Exogenous components, particularly those that enhance coenzyme synthesis, helped to increase the degradation rate, as the level of coenzymes affected full function of overexpressed nitroalkane oxidase. Importantly, simulated mixed-nitroalkane-wastewater bioreactor experiments proved excellent and sustainable degradation performance of the engineered strains for potential industrial applications. Collectively, these findings provide a promising thermophilic biological engineering platform and a new perspective for high-efficient and continuous environmental bioremediation of hazardous pollutants under aerobic and anaerobic conditions.Microplastics have attracted extensive attention regarding their role in the cycling of organic pollutants in aquatic environments. However, the influence of microplastics on the sorption of organic pollutants in soil is unclear. Herein, we investigated the sorption of polar diazepam and nonpolar phenanthrene to two soils (Inceptisol and Oxisol). Batch sorption experiments were used to evaluate the effect of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics at addition rates of 0.1%, 1%, and 10% (w/w). The addition of microplastics significantly decreased the overall sorption of diazepam at 10%, and increased the sorption of phenanthrene at 1%, while the effects were negligible at other addition rates. Decreased sorption of diazepam was attributed to its lower sorption affinity to microplastics than to soil. Microplastics, even at 0.1%, substantially decreased the relative distribution of phenanthrene in soil, particularly for PE in the Oxisol with lower foc. The sorption affinity of phenanthrene followed the order PE > soil organic carbon (SOC) > PP > PS, suggesting that PE can be a significant sink of phenanthrene in contaminated soils. Overall, microplastics can change the sorption of diazepam and phenanthrene to soil and therefore affect their mobility and environmental risk in soil ecosystems.While removal of antibiotics in constructed wetland treatment systems (CWTS) has been described previously, few studies examined the synergistic effect of multiple design and operational parameters for improving antibiotic removal. This review describes the removal of 35 widely used antibiotics in CWTS covering the most common design parameters (flow configuration, substrate, plants) and operational parameters (hydraulic retention time/hydraulic loading rates, feeding mode, aeration, influent quality), and discusses how to tailor those parameters for improving antibiotic removal based on complex removal mechanisms. To achieve an overall efficient removal of antibiotics in CWTS, our principal component analysis indicated that optimization of flow configuration, selection of plant species, and compensation for low microbial activity at low temperature is the priority strategy. For instance, a hybrid-CWTS that integrates the advantages of horizontal and vertical subsurface flow CWTS may provide a sufficient removal performance at reasonable cost and footprint.