https://www.selleckchem.com/products/ulixertinib-bvd-523-vrt752271.html The central engines of active galactic nuclei (AGNs) are powered by accreting supermassive black holes, and while AGNs are known to play an important role in galaxy evolution, the key physical processes occur on scales that are too small to be resolved spatially (aside from a few exceptional cases). Reverberation mapping is a powerful technique that overcomes this limitation by using echoes of light to determine the geometry and kinematics of the central regions. Variable ionizing radiation from close to the black hole drives correlated variability in surrounding gas/dust but with a time delay due to the light travel time between the regions, allowing reverberation mapping to effectively replace spatial resolution with time resolution. Reverberation mapping is used to measure black hole masses and to probe the innermost X-ray emitting region, the UV/optical accretion disk, the broad emission line region, and the dusty torus. In this article, we provide an overview of the technique and its varied applications.Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-β signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the