https://www.selleckchem.com/products/lgk-974.html Trimethylsilyl ethers of 1,5-diaryl-3-(trifluoromethyl)-pent-1-en-4-yn-3-oles [Ar-C≡C-C(CF3)(OSiMe3)-CH═CH-Ar'] in the superacid TfOH give rise to reactive conjugated CF3-allylic-propargylic cations [Ar-C≡C-C+(CF3)-CH═CH-Ar']. These species react with arenes in the presence of 1.5 equiv of TfOH forming regio- and stereoselectively E-1,1,5-triaryl-3-(trifluoromethyl)-pent-2-en-4-ynes [Ar-C≡C-C(CF3)═CH-CHAr'(Ar″)] in good yields. In the excess of TfOH, these CF3-pentenynes are further intramolecularly cyclized into CF3-bicyclic dihydroanthracene derivatives ("helicopter"-like molecules). The CF3-pentenynes may also react with arenes, as external nucleophiles, leading to CF3-indenes. These two main reaction pathways depend on internal nucleophilicity of aryl substituents in CF3-pentenynes and external nucleophilicity of aromatic molecules. Plausible cationic reaction mechanisms have been discussed. CF3-bicyclic dihydroanthracene derivatives have been studied regarding their cytotoxicity and virus-inhibiting activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cell line.Tumor microenvironment (TME), with complex composition, plays a vital role in the occurrence, development, and metastasis of tumors. TME becomes an important obstacle to the accessibility of nanotherapy, thus indicating the need to improve the functional design to overcome this challenge. In this study, we generate an intelligent nano-drug-delivery system (DOX@PssP-Hh NPs) with dual environmental response, which involves heparanase (HPSE) in TME and glutathione (GSH) in tumor cells. The nanosystem consists of a nanoskeleton formed by self-assembly of mPEG-ss-PEI and α-CD (PssP), chemotherapy drug doxorubicin (DOX) for enhancing antitumor efficacy, together with hyaluronidase (HAase), which is designed to degrade extracellular matrix to increase drug penetration, and an outer shell of heparin. Through the process of "responsive disintegration