Application of the aroma extract dilution analysis on the volatiles isolated from oat flour revealed 30 aroma-active compounds in the flavor dilution (FD) factor range of 2-8192, among which oat-flour-like smelling (E,E,Z)-2,4,6-nonatrienal showed by far the highest FD factor. Quantitation performed by stable isotope dilution assays and a calculation of odor activity values (OAV; ratio of the concentration to odor threshold) of 23 odorants showed an OAV of above 1. Among them, vanillin, (E,E,Z)-2,4,6-nonatrienal, 2-acetyl-1-pyrroline, 3-methylbutanoic acid, and 2-methoxy-4-vinylphenol showed the highest OAVs. In a heated (70 °C for 30 min) oat dough prepared by kneading the oat flour in the presence of sucrose and water, 34 aroma-active compounds were identified, among which 17 compounds appeared with an OAV of ≥1. During frying, the weak cereal-like aroma of the oat flour and the oat dough was changed with the generation of an intense roasty, popcorn-like aroma attribute. A comparison to recently published data on oat pastry prepared by toasting of the same dough showed a clear increase in the overall aroma intensity from flour to pastry, in particular, in the popcorn-like, roasty odor impression. Especially considerable increases in the concentrations of the popcorn-like smelling compounds 2-acetyl-1-pyrroline, 2-acetyl-3,4,5,6- and 2-acetyl-1,4,5,6-tetrahydropyridine, 2-propionyl-1-pyrroline, and 2-acetyl-2-thiazoline were measured. In addition, the concentrations of the Strecker aldehydes 2- and 3-methylbutanal, phenylacetaldehyde, and 3-(methyldithio)propanal were also much increased during the toasting process. In contrast, in line with the overall aroma profile, particularly the concentration of the oat-like smelling compound (E,E,Z)-2,4,6-nonatrienal was decreased during processing. The formation and precursors of the key aroma compounds are discussed.Using a set of oscillator strengths and excited-state dipole moments of near full configuration interaction quality determined for small compounds, we benchmark the performances of several single-reference wave function methods [CC2, CCSD, CC3, CCSDT, ADC(2), and ADC(3/2)] and time-dependent density-functional theory (TD-DFT) with various functionals (B3LYP, PBE0, M06-2X, CAM-B3LYP, and ωB97X-D). We consider the impact of various gauges (length, velocity, and mixed) and formalisms equation of motion versus linear response, relaxed versus unrelaxed orbitals, and so forth. Beyond the expected accuracy improvements and a neat decrease of formalism sensitivity when using higher-order wave function methods, the present contribution shows that, for both ADC(2) and CC2, the choice of gauge impacts more significantly the magnitude of the oscillator strengths than the choice of formalism and that CCSD yields a notable improvement on this transition property as compared to CC2. For the excited-state dipole moments, swinally, for all investigated properties, both the accuracy and consistency obtained with the second-order wave function approaches, ADC(2) and CC2, do not clearly outperform those of TD-DFT, hinting that assessing the accuracy of the latter (or selecting a specific functional) on the basis of the results of the former is not systematically a well-settled strategy.The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. https://www.selleckchem.com/TGF-beta.html The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with less then 0.6% relative standard deviation (RSD)).A resist-free metallization of copper-plated contacts is attractive to replace screen-printed silver contacts and is demonstrated on large-area silicon heterojunction (SHJ) solar cells. In our approach, a self-passivated Al layer is used as a mask during the plating process. In this study, Al/AlO x or Al2O3 plating masks are further functionalized by a self-assembled monolayer (SAM) of octadecyl phosphonic acid (ODPA). The ODPA adsorption is characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy in attenuated total reflectance (FTIR-ATR) (in situ), and contact angle measurements to link the surface chemical composition to wetting properties. The SAM leads to homogeneous hydrophobic surfaces on large-area textured solar cells and planar flexible printed circuit boards (PCBs), which allows reproducible patterning of narrow lines by inkjet printing of an etchant. Selective copper plating is then performed to complete the metallization process and produce Cu contacts in the patterned areas. Silicon heterojunction (SHJ) solar cells metallized by the complete sequence reached up to 22.4% efficiency on a large area.