https://www.selleckchem.com/products/tak-875.html oleracea. Altogether, we provide essential tools for functional gene analysis in the context of C4/CAM photosynthesis, including an efficient RNA isolation method, preferred reference genes for RT-qPCR normalisation for a range of experimental conditions, and a protocol to produce P. oleracea stable transformants using A. tumefaciens.The present experiment was done on two different cultivars of a tropical legume, Cymopsis tetragonoloba L. Taub. (cluster bean) cvv. Pusa-Naubahar (PUSA-N) and Selection-151 (S-151). The experiment was conducted under ambient ozone (O3) conditions with inputs of three different doses of inorganic nitrogen (N1, recommended; N2, 1.5-times recommended and N3, 2-times recommended) as well as control plants. The objective of this study was to evaluate the effectiveness of soil nitrogen amendments in management of ambient ozone stress in the two cultivars of C. tetragonoloba. Our experiment showed that nitrogen amendments can be an efficient measure to manage O3 injury in plants. Stimulation of antioxidant enzyme activities under nitrogen amendments is an important feature of plants that help plants cope with ambient O3 stress. Nitrogen amendments strengthened the antioxidant machinery in a more effective way in the tolerant cultivar PUSA-N, while in the sensitive cultivar S-151, avoidance strategy marked by more reduction in stomatal conductance was more prominent. Enzymes of the Halliwell-Asada pathway, especially ascorbate peroxidase and glutathione reductase, were more responsive and synchronised in PUSA-N than S-151, under similar nitrogen amendment regimes and were responsible for the differential sensitivities of the two cultivars of C. tetragonoloba. The present study shows that 1.5-times recommended dose of soil nitrogen amendments was sufficient in partial mitigation of O3 injury and the higher nitrogen dose (2-times recommended, in our case), did not provide any extra advantage to t