Correction for 'Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids' by Jingjing Lin et al., Phys. Chem. Chem. Phys., 2020, 22, 1145-1153.Based on first-principles calculations, multiferroic properties of orthorhombic manganites (RMnO3, R = La-Lu) with E-type ground state have been achieved by lanthanide contraction (chemical pressure) and/or external strain. Our research demonstrates that a smaller R radius within the octahedral voids in RMnO3 results in the increase in the tilts of the octahedra but only a gentle change in the Jahn-Teller (JT) distortion. The reduction of the intraplane octahedral rotation angle and the narrowed eg states and lifting t2g band edge are mainly responsible for the intraplane magnetic transition from ferromagnetic (La-Gd) to zigzag-like spin arrangement (Ho-Lu). In turn, the center-broken E-type RMnO3 bulk characterizes the dominated electronic polarization behavior, benefiting from their distortion response to small R substitution, which gives rise to the strong magnetoelectricity. Subsequently, we have figured out the strain strategy for obtaining an E-type transition in light rare-earth manganites (La-Gd) by imposing a series of hypothetical strains, where the small intraplane rotation angle (Θ) and large JT distortion favor the small aspect ratios of a/b and c/b, respectively. The strained LaMnO3 and GdMnO3 achieve E-type transitions successfully by imposing a modest compressive strain along the a- and c-axes and remaining free along the b-direction. Simultaneously, their polarization behaviors were comparatively studied. It was found that the size of the A-site rare-earth ions has a great influence on the external strain response, in addition to its effect on the magnetic phase transition.The role of frustrated Lewis pairs (FLPs) as ligands in gold(i) catalyzed-reactions has been computationally investigated by using state-of-the-art density functional theory calculations. To this end, the nature of (P,B)-FLP-transition metal interactions in different gold(i)-complexes has been first explored in detail with the help of the energy decomposition analysis method, which allowed us to accurately quantify the so far poorly understood AuB interactions present in these species. The impact of such interactions on the catalytic activity of gold(i)-complexes has been then evaluated by performing the Au(i)-catalyzed hydroarylation reaction of phenylacetylene with mesitylene. With the help of the activation strain model of reactivity, the factors governing the higher activity of Au(i)-complexes having a FLP as a ligand as compared to that of the parent PPh3 system have also been quantitatively identified.A novel class of transmembrane anion carriers, the click-tambjamines, display remarkable anionophoric activities in model liposomes and living cells. The versatility of this building block for the generation of molecular diversity offers promise to develop future drugs based on this design.Low cost Cu-based catalysts are attractive options in catalyzing higher alcohol synthesis (HAS) from syngas. Introducing isolated Rh single atoms into the surfaces of these Cu catalysts has the potential to dramatically improve the performance of these Cu-based catalysts. In this work, extensive density functional theory (DFT) calculations were performed with periodic slab models to systematically investigate the possibility of using Rh/Cu single-atom alloys (SAAs) as HAS catalysts. The mechanism of ethanol synthesis from syngas on the representative Rh/Cu(111) and Rh/Cu(100) surfaces was elucidated. All possible formation pathways of the C1 and C2 fragments leading to the ethanol main product, as well as the methane and methanol by-products were considered. https://www.selleckchem.com/products/methylene-blue-trihydrate.html Our calculations show that for ethanol formation, the C-C bond coupling is easier over the Rh/Cu SAA catalysts than pure Cu catalysts, suggesting that Rh/Cu SAA catalysts are more favorable for the formation of higher alcohols.Molecular sieves are of increasing importance in catalysis, the oil industry, and biomedicine. Traditional molecular sieves are generally oxides that inevitably show some absorption in the mid- and far-IR range due to the vibrations of metal-oxygen bonds, which are unfavorable for the in situ observation of the reactions in molecular sieves through IR techniques. In this study, a new metal halide In[Ba3Cl3F6] has been synthesized. It exhibits a quite transparent window from 0.366 to 22 μm and good adsorption and desorption processes.A major challenge in the field of photocatalytic carbon dioxide (CO2) reduction is to design catalyst systems featuring high selectivity for CO production, long-term stability and a composition of Earth-abundant elements. Here, we present a metal-organic framework (MOF) based catalyst to mitigate the technical problems associated with the above-mentioned features. We report a carbon-coated CuNi alloy nanocatalyst obtained by high temperature vacuum treatment of a MOF material (CuNiBTC). The resulting carbon encapsulated CuNi (denoted as CuNi/C) nanoparticles possess a well-designed core-shell composite structure with graphene shells. Meanwhile, we investigated the reaction mechanism of CO2 on the surface of the CuNi/C photocatalyst in an aqueous solution containing triethanolamine. The experimental results show that the activity and catalytic yield of CuNi/C are much higher than those of Cu/C and Ni/C alone. At the same time, the catalytic activity of CuNi/C is also affected by changing the reaction temperature in the preparation process. As a result, the CuNi/C samples can achieve nearly 90% selectivity for NIR-light-driven CO2 reduction to CO. Our approach demonstrates the potential of non-semiconductor materials as catalysts for efficient and selective reduction of CO2 to CO.Biredox ionic liquids are a new class of functionalized electrolytes that may play an important role in future capacitive energy storage devices. By allowing additional storage of electrons inside the liquids, they can improve device performance significantly. However current devices employ nanoporous carbons in which the diffusion of the liquid and the adsorption of the ions could be affected by the occurrence of electron-transfer reactions. It is therefore necessary to understand better the thermodynamics and the kinetics of such reactions in biredox ionic liquids. Here we perform ab initio molecular dynamics simulations of both the oxidized and reduced species of several redox-active ionic molecules (used in biredox ionic liquids) dissolved in acetonitrile solvent and compare them with the bare redox molecules. We show that in all the cases, it is necessary to introduce a two Gaussian state model to calculate the reaction free energies accurately. These reaction free energies are only slightly affected by the presence of the IL group on the molecule.