Animal behavior is highly structured. Yet, structured behavioral patterns-or "statistical ethograms"-are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.g., maze) navigation, in terms of movement building blocks or motor primitives. The hypothesis that we pursue is that rodent behavior is characterized by a small number of motor primitives, which are combined over time to produce open-ended movements. We assume motor primitives to be organized in terms of two sparsity principles each movement is controlled using a limited subset of motor primitives (sparse superposition) and each primitive is active only for time-limited, time-contiguous portions of movements (sparse activity). We formalize this hypothesis using a sparse dictionary learning method, which we use to extract motor primitives from rodent position and velocity data collected during spatial navigationd similarity between different mazes and behavioral patterns across multiple trials (i.e., habit formation). https://www.selleckchem.com/products/polybrene-hexadimethrine-bromide-.html We provide example uses of this computational framework, showing how it can be used to identify behavioural effects of maze complexity, analyze stereotyped behavior, classify behavioral choices and predict place and grid cell displacement in novel environments.Plasminogen activator inhibitor 1 (PAI-1) is a functional biomarker of the metabolic syndrome. Previous studies have demonstrated that PAI-1 is a mechanistic contributor to several elements of the syndrome, including obesity, hypertension and insulin resistance. Here we show that PAI-1 is also a critical regulator of hepatic lipid metabolism. RNA sequencing revealed that PAI-1 directly regulates the transcriptional expression of numerous genes involved in mammalian lipid homeostasis, including PCSK9 and FGF21. Pharmacologic or genetic reductions in plasma PAI-1 activity ameliorates hyperlipidemia in vivo. These experimental findings are complemented with the observation that genetic deficiency of PAI-1 is associated with reduced plasma PCSK9 levels in humans. Taken together, our findings identify PAI-1 as a novel contributor to mammalian lipid metabolism and provides a fundamental mechanistic insight into the pathogenesis of one of the most pervasive medical problems worldwide.L-type calcium channels (LTCCs) are highly expressed in the heart and brain and are critical for cardiac and neuronal functions. LTCC-blocking drugs have a long and successful record in the clinic for treating cardiovascular disorders. In contrast, establishment of their efficacy for indications of the central nervous system remains challenging given the tendency of existing LTCC drugs being functionally and mechanistically more selective for peripheral tissues. LTCCs in vivo are large macromolecular complexes consisting of a pore-forming subunit and other modulatory proteins, some of which may be neuro-specific and potentially harbor mechanisms for neuronal selectivity. To exploit the possibility of identifying mechanistically novel and/or neuro-selective blockers, we developed two phenotypic assays-a calcium flux-based primary screening assay and a patch clamp secondary assay, using rat primary cortical cultures. We screened a library comprised of 1278 known bioactive agents and successfully identified a majority of the potent LTCC-blocking drugs in the library. Significantly, we identified a previously unrecognized LTCC blocker with a novel mechanism, which was corroborated by patch clamp and binding studies. As such, these phenotypic assays are robust and represent an important step towards identifying mechanistically novel and neuro-selective LTCC blockers.Various aspects of social relationships have been examined as risk factors for mortality. In particular, most research has focused on either loneliness or social disengagement. We aimed to extend the current research by adding a group-level segregation measure utilizing the whole social network of one entire village in South Korea. The analyses were based on the Korean Social Life, Health and Aging Project data collected over eight years across five waves. Of the 679 old adults who participated throughout the entire project (to wave 5), 63 were confirmed as deceased. All three aspects of social relationships examined, loneliness, social disengagement, and group-level segregation, were associated with mortality in the traditional Cox proportional hazard model without considering health-related time-varying covariates. However, a Cox marginal structural model, a counterfactual statistical measure that is designed to control for censoring bias due to sample attrition over the eight years and time-varying confounding variables, revealed that only group-level segregation was associated with mortality. Our results strongly suggest that more attention is needed on group-level segregation for mortality studies, as well as on well-known individual-level risk factors, including social disengagement and loneliness. All methods were carried out in accordance with relevant guidelines and regulations.Earthy and musty off-flavors are routinely observed in farmed trout worldwide. The microbial association to the production of those off-flavors was previously reported. The current manuscript aimed to catalog the microbial enrichment (eukaryotes and prokaryotes) in semi-intensive aquaculture freshwater sources that might influence the trout aquaculture quality production. The 16S rRNA and ITS metabarcoding analyses were applied on the inflow- and pond-water samples from trout farms previously recorded a malodor fish products and located alongside Moosach and Sempt Rivers in Bavaria province, Germany. The results showed that more than 99% of the detected prokaryotic OTUs (Operational Taxonomic Unit identification) were bacteria as of ~ 75.57% were Proteobacteria, and ~ 14.4% were Bacteroidetes. Meanwhile, 118 out of 233 of the eukaryotic OTUs were known species. Of these, ~ 45% were plant pathogens, and ~ 28% were mushroom/yeasts. Based on the comparative analysis between inflow- and pond-water samples, several pro- and eukaryotic microorganisms that affect the trout aquaculture water quality and industry have been detected, including the malodor-producing microorganisms, e.