https://www.selleckchem.com/products/blu-451.html TEAP/cytochrome b domain contrast with the more malleable membrane proteins like ion channels or amino-acid transporters, which undergo large conformational changes to allow passage of relatively large metabolites. This notion of a rigid hourglass scaffold found an unexpected confirmation in the observation, revealed by structural comparisons, that an helical bundle identical to the NOX/STEAP/cytochrome b enzymes is featured by a de novo designed heme-binding protein, PS1. Apparently, nature and protein designers have independently converged to this fold as a versatile scaffold for heme-mediated reactions. The challenge is now to uncover the molecular mechanisms that implement the isozyme-specific regulation of the enzyme functions and develop much needed inhibitors and modulators for chemical biology and drug design studies.Development of nonprecious metal catalysts for oxygen reduction reaction (ORR) to reduce or eliminate Pt-based electrocatalysts is of great importance for fuel cells. Herein, Co/N-codoped carbon with carbon nanofiber (CNF) interconnected three-dimensional (3D) frameworks and graphitic carbon-encapsulated Co nanoparticles were designed and successfully prepared via the in situ growth of zeolitic imidazolate framework-67 (ZIF67) with biomass nano-microfibrillar cellulose (MFC) and then pyrolysis. The catalyst (Co/N-C@CNFs) exhibited outstanding long-term catalytic durability with 92.7% current retention after 70 000 s, which was much higher than that of commercial Pt/C in alkaline media. The support and connection of CNFs to Co/N-C frameworks and the protection of Co nanoparticles by graphite layers contribute to their impressive long-term catalytic stability. Meanwhile, Co/C-N@CNFs displayed excellent ORR catalytic performance (E0 = 0.952 V vs RHE, E1/2 = 0.852 V vs RHE, and n 4.2) in alkaline media. This strategy provides new insights into developing advanced nonprecious metal carbon-based cataly