7% CM was optimal for BR composting. Humic substance is a ubiquitous class of natural organic matter (NOM) in soil and aquatic ecosystems, which severely affects the terrestrial and aquatic environments as well as water-based engineering systems by adsorption on solids (e.g., soil minerals, nanoparticles, membranes) via different interaction mechanisms. Herein, the chemical force microscopy (CFM) technique was employed to quantitatively probe the intermolecular forces of humic acid (HA, a representative humic substance) interacting with self-assembled monolayers (SAMs, i.e., OH-SAMs, CH3-SAMs, NH2-SAMs and COOH-SAMs) in various aqueous environments at the nanoscale. The interaction forces measured during approach could be well fitted by the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by incorporating the hydrophobic interaction. The average adhesion energy followed the trend as NH2-SAMs (∼3.11 mJ/m2) > CH3-SAMs (∼2.03 mJ/m2) > OH-SAMs (∼1.38 mJ/m2) > COOH-SAMs (∼0.52 mJ/m2) in 100 mM NaCl at pH 5.8, indicating the significant role of electrostatic attraction in contributing to the HA adhesion, followed by hydrophobic interaction and hydrogen bonding. The adhesion energy was found to be dependent on NaCl concentration, Ca2+ addition and pH. https://www.selleckchem.com/products/cbr-470-1.html For the interaction between NH2-SAMs and HA, their electrostatic attraction at pH 5.8 turned to repulsion under alkaline condition which led to the sudden drop of adhesion energy. Such results promised the adsorption and release of HA using the recyclable magnetic Fe3O4 nanoparticles coated with (3-aminopropyl)tiethoxysilane (APTES). This work provides quantitative information on the molecular interaction mechanism underlying the adsorption of HA on solids of varying surface chemistry at the nanoscale, with useful implications for developing effective chemical additives to remove HA in water treatment and many other engineering processes. Kitchen wastes (KW) have been widely investigated for bio-ethanol production, while no study utilizes KW as ethanol source to stimulate the methanogenic communities to perform direct interspecies electron transfer (DIET), since the excess acidity contained after the biological ethanol-type fermentation pretreatment (BEFP) can seriously inhibit the DIET-based syntrophic metabolism. In this study, a strategy that utilized waste activated sludge (WAS) as co-substrate to relieve the excess acidity after BEFP during anaerobic co-digestion (AcoD) was proposed. The results showed that, under the mixed ratio of 12 and 15 (KWWAS, volume ratio), both methane production and organic compound removal evidently increased, compared with that treating the sole WAS. Conversely, under the other mixed ratios (sole KW, 51, 21 and 11), no methane but the evident hydrogen production was detected, and syntrophic metabolism of organic acids and alcohols was prevented. Three-dimensional excitation emission matrix (3D-EEM) analysis showed that the protein-like organic compounds contained in both KW and WAS were effectively degraded. Furthermore, the maximum methane production potential from WAS during AcoD (260.5 ± 4.1 and 264.3 ± 2.7 mL/g-COD) was higher than that treating sole WAS (250.8 ± 0.1 mL/g-COD). Microbial community analysis showed that, some genera capable of metabolizing the complex organic compounds with the reduction of the elemental sulfur or equipped with the electrically conductive pili were specially enriched during AcoD under the mixed ratio of 12 and 15. They might proceed DIET with methanogens, such as Methanosarcina and Methanospirillum species, to maintain the syntrophic metabolism effective and stable, since the abundance of both Methanosarcina and Methanospirillum species evidently increased. In anaerobic membrane bioreactor (AnMBR) treating organic solid waste, acetate is one of the most important precursors to CH4. However, the identity and diversity of anaerobic acetate degraders are largely unknown, possibly due to their slow growth rates and low abundances. Here, we identified acetate-degrading microorganisms in the AnMBR sludges by high-sensitivity stable isotope probing. Degradation of the amended 13C-acetate coincided with production of 13CH4 and 13CO2 during the sludge incubation. High-throughput sequencing of RNA density fractions indicated that the aceticlastic and hydrogenotrophic methanogens, i.e., Methanosaeta sp. (acetate dissimilator) and Methanolinea sp. (acetate assimilator), incorporated 13C-acetate significantly. Remarkably, 22 bacterial species incorporating 13C-acetate were identified, whereas their majority was distantly related to the cultured representatives. Only two of them were the class Deltaproteobacteria-affiliated lineages with syntrophic volatile fatty acid oxidation activities. Phylogenetic tree analysis and population dynamics tracing revealed that novel species of the hydrolyzing and/or fermenting taxa, such as the phyla Bacteroidetes, Chloroflexi and Lentisphaerae, exhibited low relative abundances comparable to that of Methanolinea sp. (0.00011%) during the AnMBR operation, suggesting that these bacteria were involved in anaerobic acetate assimilation. Meanwhile, novel species of the phyla Firmicutes, Synergistetes and Caldiserica, the candidate phyla Aminicenantes and Atribacteria and the candidate division GOUTA4-related clade, as well as the known Deltaproteobacteria members, existed at relatively high abundances (0.00031%-0.31121%) in the reactor, suggesting that these bacterial species participated in anaerobic dissimilation of acetate, e.g., syntrophic acetate oxidation. The results of this study demonstrated the unexpected diversity and ecophysiological features of the anaerobic acetate degraders in the AnMBR treating organic solid waste. In order to understand and minimize the formation of halogenated disinfection by-products (DBPs), it is important to investigate how dissolved organic matter (DOM) contributes to their generation. In the present study, we analysed the DOM profile of water samples from the Barcelona catchment area by high resolution mass spectrometry (HRMS) and we studied the changes after chlorination. Chlorination produced significant changes in the DOM, decreased the average m/z and Kendrick mass defect (KMD) of their spectra and decreased the number and abundance of lignin-like features. The Van Krevelen (VK) fingerprint exhibited several noticeable changes, including the appearance of highly oxidized peaks in the tannin-like region (average O/C, 0.78 ± 0.08), the appearance of features with low H/C and the disappearance of more than half of the lipids-like features. Up to 657 halogenated peaks were generated during sample chlorination, most of which in the condensed hydrocarbons-like and the lignin-like region of the VK diagram.