https://www.selleckchem.com/products/iberdomide.html The results of radical trapping experiment showed that O2-, h+, OH, O3 and H2O2 were the main reactive species for AO7 degradation in the DBD-NTP and g-C3N4-15/TiO2 process. The Z-scheme photocatalytic mechanism for the g-C3N4/TiO2 catalyst was proposed. Exposure to endocrine disruptors interferes with the synthesis, release, transport and metabolic activities of hormones, thus impairing human health significantly. Bisphenol A (BpA), an endocrine disruptor, commonly released into the environment by industrial activities and needs immediate attention. This study aims at investigating the process and prospects of deploying bio-electrochemical systems (BES) for the removal of BpA from artificially contaminated soil using Bacillus subtilis HV-3. The BES was setup with desired operating conditions initial concentration of BpA (80-150 mg/L), pH (3-11) and applied potential voltage (0.6-1.4 V). Under optimized conditions (initial BpA concentration, 100 mg/L; pH 7; and applied voltage 1.0 V), close to 98% degradation of BpA was achieved. The intermediates produced during degradation were analysed using High performance liquid chromatography-Mass spectrometry and the possible degradation pathway was elucidated. Phytotoxicity studies in the remediated soil with Phaseolus mungo confirmed the environmental applicability of the BES system. Aerobic composting and anaerobic digestion with hydrolysis pretreatment are two mainstream methods used to recycle and reclaim sewage sludge. However, during these sludge treatment processes, many odors are emitted that may cause severe emotional disturbance and health risks to those exposed. This study identified odor pollution (i.e. sensory influence, odor contribution, and human risks) from samples collected during sludge aerobic composting throughout different seasons as well as during anaerobic digestion with hydrolysis pretreatment. Odor intensity, odor active values, and permissible c