The venom peptidomes of male and female specimens of were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding. The venom peptidomes of male and female specimens of B. atrox were analyzed by mass spectrometry-based approaches in this work. The study points to differences in disintegrin levels in the venoms of females that may result in distinct pathophysiology of envenomation. Further research is required to explore the potential biological implications of this finding. Proteases play an important role for the proper physiological functions of the most diverse organisms. When unregulated, they are associated with several pathologies. Therefore, proteases have become potential therapeutic targets regarding the search for inhibitors. Snake venoms are complex mixtures of molecules that can feature a variety of functions, including peptidase inhibition. Considering this, the present study reports the purification and characterization of a Kunitz-type peptide present in the venom as a simultaneous inhibitor of elastase-1 and cathepsin L. The low molecular weight pool from venom was fractionated in reverse phase HPLC and all peaks were tested in fluorimetric assays. The selected fraction that presented inhibitory activity over both proteases was submitted to mass spectrometry analysis, and the obtained sequence was determined as a Kunitz-type serine protease inhibitor homolog dendrotoxin I. The molecular docking of the Kunitz peptide on the elastase was carried out in thteine proteases, and this could contribute to further understand the envenomation process by D. polylepis. In addition, the PEP2 inhibits the cathepsin L activity with a low inhibition constant.Oxygen sensing is inherent among most animal lifeforms and is critical for organism survival. Oxygen sensing mechanisms collectively trigger cellular and physiological responses that enable adaption to a reduction in ideal oxygen levels. The major mechanism by which oxygen-responsive changes in the transcriptome occur are mediated through the hypoxia-inducible factor (HIF) pathway. Upon reduced oxygen conditions, HIF activates hypoxia-responsive gene expression programs. However, under normal oxygen conditions, the activity of HIF is regularly suppressed by cellular oxygen sensors; prolyl-4 and asparaginyl hydroxylases. Recently, these oxygen sensors have also been found to suppress the function of two lysine methyltransferases, G9a and G9a-like protein (GLP). In this manner, the methyltransferase activity of G9a and GLP are hypoxia-inducible and thus present a new avenue of low-oxygen signaling. Furthermore, G9a and GLP elicit lysine methylation on a wide variety of non-histone proteins, many of which are known to be regulated by hypoxia. In this article we aim to review the effects of oxygen on G9a and GLP function, non-histone methylation events inflicted by these methyltransferases, and the clinical relevance of these enzymes in cancer.The protozoan Trypanosoma cruzi (T. https://www.selleckchem.com/products/VX-770.html cruzi) is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and T. cruzi are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system. Our group previously showed that distinct strains of T. cruzi (JG and Col1.7G2) acquired differential tissue distribution in the chronic stage in dually infected BALB/c mice. To investigate changes in the host triggered by the two distinct T. cruzi strains, we assessed the gene expression profiles of BALB/c mouse hearts infected with either JG, Col1.7G2 or an equivalent mixture of both parasites during the initial phase of infection. This study demonstrates the clear differences in modulation of host gene expression by both parasites. Col1.7G2 strongly activated Th1-polarized immune signature genes, whereas JG caused only minor activation of the host immune response. Moreover, JG strongly reduced the expression of genes encoding ribosomal proteins and mitochondrial proteins related to the electron transport chain. Interestingly, the evaluation of gene expression in mice inoculated with a mixture of the parasites produced expression profiles with both up- and downregulated genes, indicating the coexistence of both parasite strains in the heart during the acute phase. This study suggests that different strains of T. cruzi may be distinguished by their efficiency in activating the immune system, modulating host energy metabolism and reactive oxygen species production and decreasing protein synthesis during early infection, which may be crucial for parasite persistence in specific organs.The pathogenesis of diabetic nephropathy (DN) is accompanied by alterations in biological function and signaling pathways regulated through complex molecular mechanisms. A number of regulatory factors, including transcription factors (TFs) and non-coding RNAs (ncRNAs, including lncRNAs and miRNAs), have been implicated in DN; however, it is unclear how the interactions among these regulatory factors contribute to the development of DN pathogenesis. In this study, we developed a network-based analysis to decipher interplays between TFs and ncRNAs regulating progression of DN by combining omics data with regulatory factor-target information. To accomplish this, we identified differential expression programs of mRNAs and miRNAs during early DN (EDN) and established DN. We then uncovered putative interactive connections among miRNA-mRNA, lncRNA-miRNA, and lncRNA-mRNA implicated in transcriptional control. This led to the identification of two lncRNAs (MALAT1 and NEAT1) and the three TFs (NF-κB, NFE2L2, and PPARG) that likely cooperate with a set of miRNAs to modulate EDN and DN target genes. The results highlight how crosstalk among TFs, lncRNAs, and miRNAs regulate the expression of genes both transcriptionally and post-transcriptionally, and our findings provide new insights into the molecular basis and pathogenesis of progressive DN.