https://www.selleckchem.com/products/ipa-3.html To further increase the validity of the model, a metaheuristic algorithm, namely Grey Wolf Optimizer (GWO), is then applied to search for the optimal emerging coefficients for the proposed model. Two real examples and China's CO2 emissions from fuel combustion are considered to verify the effectiveness of the newly proposed model, the experimental results show that the newly proposed model outperforms other benchmark models in terms of forecasting accuracy. The proposed model is finally employed to forecast the future China's CO2 emissions from fuel combustion by 2023, accounting for 10,039.80 million tons. Based on the forecasts, several policy suggestions are provided to curb CO2 emissions.Acrylamide (AA) is routinely used in laboratories and industries, and its disposal is always a problem; consequently, offering an alternative for their treatment contributes to conducting research in a responsible way. Therefore, in this work, acrylamide solutions were degraded by ultraviolet radiation and hydrogen peroxide (H2O2), and their toxicity was evaluated using a Desmodesmus quadricauda microalgae growth assay. The AA solutions were exposed to different dosages of H2O2 and different exposure times to UV radiation. The degradation was evaluated by liquid chromatography, which allowed the identification of the acrylamide peak and subsequent by-product peaks. A 100% degradation of the 1.5 mg L-1 AA solution with UV/H2O2 (0.034 g L-1) was achieved in just 10 min. The by-products formed did not inhibit the growth of D. quadricauda microalgae. The number of D. quadricauda individuals that grew in acrylamide solutions exposed to 20 and 30 min of UV radiation, with 0.034 g L-1 of H2O2, was very similar to the number of individuals that grew in the control solution. Thus, the treatment proposed in this work using H2O2 combined with ultraviolet radiation degraded acrylamide into by-products with reduced toxicity.Heavy metals, includ