https://www.selleckchem.com/products/apg-2449.html The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.The proteasome is involved in the regulation of all cellular pathways and consequently plays a central role in the control of cellular homeostasis. Together with its regulators, it is at the frontline, both as an actor and as a target, in human health and when homeostasis is disturbed in disease. In this review, we aim to provide an overview of the many levels at which the functions of the proteasome and its regulators can be regulated to cope with cellular needs or are altered in pathological conditions.Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers colle