https://www.selleckchem.com/products/ly2801653-merestinib.html 15, = .01). The strength of association of [Formula see text] with mortality was similar to that of V /V and ventilatory ratio. [Formula see text] was independently associated with hospital mortality in subjects with ARDS caused by COVID-19. [Formula see text] could be used at the patient's bedside for outcome prediction and severity stratification, due to the simplicity of its calculation. These findings need to be confirmed in subjects with ARDS without viral pneumonia and when lung-protective mechanical ventilation is not rigorously applied. [Formula see text] was independently associated with hospital mortality in subjects with ARDS caused by COVID-19. [Formula see text] could be used at the patient's bedside for outcome prediction and severity stratification, due to the simplicity of its calculation. These findings need to be confirmed in subjects with ARDS without viral pneumonia and when lung-protective mechanical ventilation is not rigorously applied. Diaphragmatic respiratory effort during mechanical ventilation is an important determinant of patient outcome, but direct measurement of diaphragmatic contractility requires specialized instrumentation and technical expertise. We sought to determine whether routinely collected clinical variables can predict diaphragmatic contractility and stratify the risk of diaphragm atrophy. We conducted a secondary analysis of a prospective cohort study on diaphragm ultrasound in mechanically ventilated subjects. Clinical variables, such as breathing frequency, ventilator settings, and blood gases, were recorded longitudinally. Machine learning techniques were used to identify variables predicting diaphragm contractility and stratifying the risk of diaphragm atrophy (> 10% decrease in thickness from baseline). Performance of the variables was evaluated in mixed-effects logistic regression and random-effects tree models using the area under the receiver operating