computational.bio.uni-giessen.de/ecfhub), will serve as a powerful hypothesis-generator to guide future research in the field.The clinical transfusion of red blood cells (RBCs) has provided the greatest number of cryobiology applications in the case of rare blood groups and antibody problems, as well as civil and military disasters. The main technical difficulty with the current clinical technique is the removal of high concentration glycerol (20% or 40%) after thawing. https://www.selleckchem.com/products/VX-770.html Reducing the probability of intracellular ice formation (IIF) as well as preventing the solution effect are crucial to ensure RBCs avoid cryoinjury. Here, the non-permeating cryoprotectant trehalose was used to dehydrate RBCs before freezing. Furthermore, with the substitution of the low concentration glycerol (5% or 7.5%) for the intracellular remaining water, the bulk of RBCs were successfully cryopreserved to obtain a nearly 95% high survival rate with rapid cooling via EP tubes. Additionally, the washed RBCs after cryopreservation maintained their morphology, deformability, ATP, and 2-3 DPG levels, and all of them met the clinical standards for transfusion safety. Moreover, the whole addition and washing process was simple and easy to operate and could be completed within 30 min, which is crucial for emergency uses. This method will provide more potential for current clinical RBCs cryopreservation practices.Small intestine-targeted drug delivery by oral administration has aroused the growing interest of researchers. In this work, the child-parent microrobot (CPM) as a vehicle protects the child microrobots (CMs) under a gastric acid environment and releases them in the small intestinal environment. The intelligent hydrogel-based CPMs with sphere, mushroom, red blood cell, and teardrop shapes are fabricated by an extrusion-dripping method. The CPMs package uniform CMs, which are fabricated by designed microfluidic (MF) devices. The fabrication mechanism and tunability of CMs and CPMs with different sizes and shapes are analyzed, modeled, and simulated. The shape of CPM can affect its drug release efficiency and kinetic characteristics. A vision-feedback magnetic driving system (VMDS) actuates and navigates CPM along the predefined path to the destination and continuously releases drug in the simulated intestinal fluid (SIF, a low Reynolds number (Re) regime) using a new motion control method with the tracking-learning-detection (TLD) algorithm. The newly designed CPM combines the advantages of powerful propulsion, good biocompatibility, and remarkable drug loading and release capacity at the intestinal level, which is expected to be competent for oral administration of small intestine-targeted therapy in the future.Granular materials are often encountered in science and engineering disciplines, in which controlling the particle contacts is one of the critical issues for the design, engineering, and utilization of their desired properties. The achievable rapid fabrication of nanoparticles with tunable physical and chemical properties facilitates tailoring the macroscopic properties of particle assemblies through contacts at the nanoscale. Models have been developed to predict the mechanical properties of macroscopic granular materials; however, their predicted power in the case of nanoparticle assemblies is still uncertain. Here, we investigate the influence of nanocontacts on the elasticity and thermal conductivity of a granular fiber comprised of close-packed silica nanoparticles. A complete elastic moduli characterization was realized by non-contact and non-destructive Brillouin light spectroscopy, which also allowed resolving the stiffness of the constituent particles in situ. In the framework of effective medium models, the strong enhancement of the elastic moduli is attributed to the formation of adhesive nanocontacts with physical and/or chemical bondings. The nanoparticle contacts are also responsible for the increase in the fiber thermal conductivity that emphasizes the role of interface thermal resistance, which tends to be ignored in most porosity models. This insight into the fundamental understanding of structure-property relationships advances knowledge on the manipulation of granular systems at the nanoscale.We performed label-free imaging of human-hair medulla using multi-modal nonlinear optical microscopy. Intra-medulla lipids (IMLs) were clearly visualized by ultra-multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging. Two groups of IMLs were found second harmonic generation (SHG) active and inactive. By combining SHG analysis with CARS, the two groups were identified as free fatty acids and wax esters, respectively.Acne is one of the common dermatological skin inflammatory conditions. The current therapeutic modalities for the treatment of acne include the administration of antibiotics and anti-inflammatory agents. The rising instance of antibiotic resistance in acne strains has led to the exploration of alternative therapeutic modalities. In the current study, we have employed a liposomal gold nanoparticle entrapping curcumin (Au Lipos Cur NPs) for dual light-mediated therapy for the treatment of acne. These nanoparticles exerted a positive zeta potential that enabled their localized follicular delivery by iontophoresis. The localized deposition of Au Lipos NPs leads to photothermal transduction causing destruction of sebaceous glands. Furthermore, when the nanoparticles were assessed in vitro by sequential irradiation with NIR and blue light, it resulted in significant inhibition of bacterial growth. Thus the dual light-mediated therapy by Au Lipos Cur NPs can form a potential therapeutic modality for the efficient treatment of recurrent acne.The emerging field of hybrid DNA-protein nanotechnology brings with it the potential for many novel materials which combine the addressability of DNA nanotechnology with the versatility of protein interactions. However, the design and computational study of these hybrid structures is difficult due to the system sizes involved. To aid in the design and in silico analysis process, we introduce here a coarse-grained DNA/RNA-protein model that extends the oxDNA/oxRNA models of DNA/RNA with a coarse-grained model of proteins based on an anisotropic network model representation. Fully equipped with analysis scripts and visualization, our model aims to facilitate hybrid nanomaterial design towards eventual experimental realization, as well as enabling study of biological complexes. We further demonstrate its usage by simulating DNA-protein nanocage, DNA wrapped around histones, and a nascent RNA in polymerase.