https://www.selleckchem.com/products/Axitinib.html The global disruptions caused by the coronavirus disease 2019 crisis posed a threat to the momentum the vector control team at the Liverpool School of Tropical Medicine (LSTM) and the Programme National de Lutte contre la Tryaponosomiase Humaine Africaine (PNLTHA) had built in their efforts to control tsetse fly populations in the Democratic Republic of Congo. But despite the pandemic and global lockdown, field activities did continue and the same impressive results in tsetse fly reduction were observed and the team followed this by completing a round of 'tiny target' deployment without any external presence. Such a success was possible due to the investment in vector control capacity strengthening undertaken by the LSTM and PNLTHA.Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of hi