https://www.selleckchem.com/products/Teniposide(Vumon).html Eukaryotic cells contain numerous components, which are known as subcellular compartments or subcellular organelles. Proteins must be sorted to proper subcellular compartments to carry out their molecular functions. Mis-localized proteins are related to various cancers. Identifying mis-localized proteins is important in understanding the pathology of cancers and in developing therapies. However, experimental methods, which are used to determine protein subcellular locations, are always costly and time-consuming. We tried to identify cancer-related mis-localized proteins in three different cancers using computational approaches. By integrating gene expression profiles and dynamic protein-protein interaction networks, we established DPPN-SVM (Dynamic Protein-Protein Network with Support Vector Machine), a predictive model using the SVM classifier with diffusion kernels. With this predictive model, we identified a number of mis-localized proteins. Since we introduced the dynamic protein-protein network, which has never been considered in existing works, our model is capable of identifying more mis-localized proteins than existing studies. As far as we know, this is the first study to incorporate dynamic protein-protein interaction network in identifying mis-localized proteins in cancers.The diagnosis of the degree of differentiation of tumor cells can help physicians to make timely detection and take appropriate treatment for the patient's condition. In this study, the original dataset is clustered into two independent types by the Kohonen clustering algorithm. One type is used as the development sets to find correlation indicators and establish predictive models of differentiation, while the other type is used as the validation sets to test the correlation indicators and models. In the development sets, thirteen indicators significantly associated with the degree of differentiation of esophageal squamous cell