https://www.selleckchem.com/products/msc-4381.html We demonstrate that the deviation in the reflectivity signal is reduced to ∼8 × 10-6 for a solution change from phosphate-buffered saline (PBS) (n = 1.335) to 1% dimethyl sulfoxide (DMSO) in PBS (n = 1.336). As a proof of concept, we applied the method to a biotin-streptavidin interaction, where biotin (MW = 244.3 Da) was dissolved at a final concentration of 1 μM in a 1% solution of DMSO in PBS and flowed over immobilized streptavidin. Clear binding results were obtained without a reference channel or any computational correction.NiCo2S4 nanoparticles (NPs) were dry coated on LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode using a resonant acoustic coating technique to produce all-solid-state lithium batteries. The NiCo2S4 coating improved the electrochemical properties of the NCM622 cathode. In addition, NiCo2S4 eliminated the space-charge layer and the cathode showed an excellent affinity with the interface with a sulfide-based solid electrolyte as an inert material. X-ray diffraction patterns of NCM622 coated with NiCo2S4 showed the same peak separations and lattice parameters as those of bare NCM622. Field-emission scanning electron microscopy and electron dispersive spectroscopy mapping analyses showed that 0.3 wt% NiCo2S4-coated NCM622 had an evenly modified surface with NiCo2S4 NPs. X-ray photoelectron spectroscopy (XPS) revealed that the surface of 0.3 wt% NiCo2S4-coated NCM622 had two different S 2p peaks, a Co-S peak, and Ni and Co peaks, compared to those of bare NCM622. Electrochemical studies with electrochemical impedance spectroscopy and galvanostatic charge-discharge cycle performances showed that NiCo2S4-coated NCM622 retained a higher specific capacity over multiple cycles than bare NCM622. Especially, 0.3 wt% NiCo2S4-coated NCM622 exhibited a capacity retention of 60.6% at a current density of 15 mA/g for 20 cycles, compared to only 37.3% for bare NCM622. Finally, interfacial XPS and transmission electron m