https://www.selleckchem.com/products/Temsirolimus.html European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.Pervaporation is a membrane technique used to separate azeotropic and close boiling solvents. Heterogenous PVA composite membranes with NaY zeolite supported on polyamide-6 were fabricated and utilized in organic-organic pervaporation. The efficiency of prepared membranes was evaluated in the separation of ethanol/ethyl tert-butyl ether (EtOH/ETBE) using separation factor (β) and the thickness normalized pervaporation separation index (PSIN). Implementation of the fringe projection phase-shifting method all