https://www.selleckchem.com/products/itd-1.html BACKGROUND Gait variability and fractal dynamics may be affected by the walking duration. OBJECTIVE The purpose of this study is to examine the reproducibility of stride time while walking on a self-paced treadmill. METHODS Fifteen young and healthy subjects walked on the treadmill for 10 minutes. Three to eight minutes duration of the data were used to compare the trial-to-trial and day-to-day reproducibility of the average, variability, and fractal dynamics of stride time. RESULTS The results show that all variables had high trial-to-trial reproducibility. In the day-to-day results, the average walking speed and mean stride time showed reproducibility without regard for duration, but the variability and gait fractal dynamics showed differences in reproducibility according to duration. The variability and fractal dynamics showed better reproducibility in less than 5 minutes and over time, respectively. However, both variables generally showed improved reproducibility when average data from two to three rounds were used. CONCLUSION Based on the results of this study, it is proposed that variability should be examined using data of 5 min or less, and fractal dynamics should be examined using 5 min or more of repeated data when performing walking tests from a gait dynamics perspective.BACKGROUND The nervous system senses and transmits information through the firing behavior of neurons, and this process is affected by various noises. However, in the previous study of the influence of noise on nerve discharge, the channel of some noise effects is not clear, and the difference from other noises was not examined. OBJECTIVE To construct ion channel noise which is more biologically significant, and to clarify the basic characteristics of the random firing rhythm of neurons generated by different types of noise acting on ion channels. METHOD Based on the dynamics of the ion channel, we constructed ion channel noise. We simulate